## Politechnika Warszawska – PSAA - EASN

## Kształcenie i badania w uczelniach europejskich – szanse wynikające z uczestnictwa w EASN i w projekcie PEGASUS

# Zdobysław Goraj

I Seminarium p.t. "Kształcenie i badania naukowe w Lotnictwie i Kosmonautyce"

Warszawa 28.01.2011

## **Map of PEGASUS Members**



## Uwarunkowania

**BACKGROUND:** In Europe and worldwide, the aerospace industry is involved in an intense restructuring process that transcends national boundaries and interests. Increasingly the market polarises into two sectors, European and North American. At the same time in Europe, there is a move directed by the individual Ministers of Education to harmonise higher education (The Sorbonne / Bologna Declaration). For some nations this involves greater change than for others. For all, however, it involves only structure and not content of the education and training programmes. As a consequence, it does raise the question as to whether or not improvements can be made to those programmes offered by academia to the aerospace industry. Additionally, there remains the fact that our industry is in danger today of losing its appeal in the face of other growing industries, including services, with the possible consequence that there will soon begin a move of intellectual capital away from the aerospace programmes. Such a move has already begun within the USA and other places.

# Cel główny

**GENERAL OBJECTIVES OF PEGASUS:** In full recognition of these facts, PEGASUS has been formed from an initiative taken by the four main French Grandes Ecoles involved in aerospace engineering. The general objective of PEGASUS is to optimise the services that its member institutions offer in the best interests of Europe both in terms of continuing to attract the best students and also to offer highly relevant educational and research programmes. Co-ordinated change and innovation will be required to achieve objectives to be defined through close links and interaction with our aerospace industry and relevant Government agencies. The founding partners of PEGASUS have collaborated for some years in an ad-hoc manner (largely supported by EU funding) but now wish to work more closely together in a manner that better satisfies the needs of their students and their employers across Europe. Today more than 2500 aeronautical engineers graduate from the member institutions of PEGASUS each year.

# Cele szczegółowe

**SPECIFIC OBJECTIVES:** To achieve the general goals of PEGASUS, it is essential that there exists, on an on-going basis, a close working relationship with the European aerospace industry and Government Agencies. At the simplest level one aim would be to accelerate the process by which employers within each nation of Europe understand and fully appreciate the nature of the programmes of study offered outside their own country, and so assist in the 'European-isation' of employment opportunities. A more important aim would be that of tailoring the student experience so as to maximise the advantages that can be associated with the multi-language, multi-culture nature of our industry (as opposed to the single-language culture of the competition). Even more importantly, PEGASUS members must ensure that together they offer a range of high quality and efficient programmes of support. These programmes must include:

- Degree-awarding programmes
- Continuing Education
- Research
  - International cooperation

# Rosnąca indywidualizacja wykształcenia



- 1. Nawet specjaliści mają problem z rozpoznaniem poziomu wykształcenia
- 2. Ambicja (cel) sieci PEGASUS: ustanowienie systemu do rozpoznawania i porównywania dyplomów Europejskich Uniwersytetów Lotniczych

# **Dyplom - certyfikat**

The PEGASUS Certificate is to be attributed to all graduates of the PEGASUS institutions. It states their successful completion, within one or several partner institutions of the PEGASUS network, of a prescribed programme of study giving them the skills required to the exercise of the engineering profession in aeronautics and aerospace. By attaching the PEGASUS Certificate to his demands for employment in Europe, a young engineer will be enabled to demonstrate that the quality of his studies is comparable to that of the PEGASUS home universities of the employing company. It is believed that the PEGASUS Certificate will encourage the European mobility in the aerospace domain.

# Pegasus AWARD

Differently from the Certificate, the <u>PEGASUS AWARD</u> ("special Achievement through Working Abroad for academic **R**esearch or industrial **D**evelopment projects") is to be attributed only to those students spending at least five months in either an international exchange programme in a partner institution or in an industrial or research project conducted in a partner company or laboratory. The PEGASUS AWARD is therefore a statement of recognition of the successful activity conducted by the student in an international environment under PEGASUS responsibility. This is an important point, because through the AWARD label PEGASUS certifies an international experience for which its own institutions have provided to the students the necessary conditions. It is expected that a young graduate engineer able to display the PEGASUS AWARD will already be in possession of a European vision, which will make him particularly attractive for employment in the aerospace world.

All issued PEGASUS AWARDs are registered in a central database by the PEGASUS Administrative Office in Toulouse, where their complete list is regularly updated.

## Zatrudnienie w europejskim przemyśle lotniczym (stan na 2003)



| Average 3-y           | ear value 200 | 02-2004 PER YEAR               |                              |
|-----------------------|---------------|--------------------------------|------------------------------|
| University            |               | +5 level<br>(Masters included) | +8 level<br>(Doctorate, PhD) |
| ENAC Toulouse         | (F)           | 225 <sup>4</sup>               | 5                            |
| SUPAERO Toulouse      | (F)           | 280                            | 30                           |
| ENSICA Toulouse       | (F)           | <b>210<sup>2</sup></b>         | 5                            |
| ENSMA Poitiers        | (F)           | 150                            | 26                           |
| RWTH Aachen           | (D)           | 42                             | 13                           |
| TU Berlin             | (D)           | 58                             | 14                           |
| TU Braunschweig       | (D)           | 40                             | 10                           |
| TU Dresden            | (D)           | 36                             | 5                            |
| U. Stuttgart          | (D)           | 125                            | 22                           |
| TU Munich             | (D)           | 77                             | 13                           |
| Politecnico di Milano | (I)           | 153                            | 8                            |
| U. Pisa               | (I)           | 85                             | 5                            |
| U.Napoli              | (I)           | 100                            | 10                           |
| U.Roma                | (I)           | 130                            | 10                           |
| Politecnico di Torino | (I)           | 120                            | 8                            |
| TU Delft              | (NL)          | 130                            | 25                           |
| NTNU Trondheim        | (N)           | 11                             | 2                            |
| ETSIA Madrid          | (E)           | 200                            | 10                           |
| IST Lisboa            | (P)           | 30                             | 3                            |
| KTH Stockholm         | (S)           | 40                             | 5                            |
| U. Bristol            | (UK)          | 143                            | 9                            |
| Cranfield U.          | (UK)          | 153                            | 38                           |
| U. Glasgow            | (UK)          | 60                             | 3                            |
| TOTAL                 |               | 2518                           | 279                          |

Absolwenci kursu +5 i +8 (dane średnie za lata 2002-2004)

<sup>&</sup>lt;sup>4</sup> including 50 Chinese Masters taught on-site in China. Since ENAC, ENSICA and SUPAERO have several Master programmes in common, whose students should not be counted twice, the total number of +5 level students from the 3 schools is only 635.

### Bilateral exchange agreements within the PEGASUS (ERASMUS, double-degrees, stunentd and professors mobility, ...)

| ENAC Toulouse | ENSICA Toulouse | <b>ENSMA</b> Poitiers | SUPAERO Toulouse | RWTH Aachen | TU Berlin | TU Braunschweig | TU München | Universität Stuttgart | TU Dresden | Politecnico di Milano | Politecnico di Torino | Università di Pisa | Università di Roma I | Università di Napoli I | Cranfield University | University of Bristol | University of Glasgow | KTH Stockholm | TU Delft | NTNU Trondheim | ETSIA Madrid | IST Lisboa |                        |
|---------------|-----------------|-----------------------|------------------|-------------|-----------|-----------------|------------|-----------------------|------------|-----------------------|-----------------------|--------------------|----------------------|------------------------|----------------------|-----------------------|-----------------------|---------------|----------|----------------|--------------|------------|------------------------|
|               |                 |                       |                  |             | X         | X               | X          | X                     |            | X                     | X                     |                    | X                    |                        | X                    | X                     | X                     | X             | X        |                | X            |            | ENAC Toulouse          |
|               |                 |                       |                  | Х           |           | X               | X          | X                     |            | X                     | X                     |                    |                      |                        | X                    | X                     | X                     | X             | X        | X              | X            | X          | ENSICA Toulouse        |
|               |                 |                       |                  |             |           |                 |            | X                     |            | X                     | X                     |                    | X                    |                        | X                    | X                     |                       |               | X        | X              | X            |            | ENSMA Poitiers         |
|               |                 |                       |                  |             | X         |                 | X          | X                     |            | X                     | X                     | X                  | X                    | X                      | X                    |                       | X                     | Х             |          |                | X            | Х          | SUPAERO Toulouse       |
|               |                 |                       |                  |             |           |                 |            |                       |            | Х                     | X                     |                    |                      |                        |                      |                       |                       | X             | X        | Х              | X            |            | RWTH Aachen            |
|               |                 |                       |                  |             |           |                 |            |                       |            | Х                     |                       |                    |                      |                        | X                    | X                     |                       | X             | X        |                | X            |            | TU Berlin              |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        | X                    |                       |                       | X             |          |                |              |            | TU Braunschweig        |
|               |                 |                       |                  |             |           |                 |            |                       |            | Х                     | X                     |                    | X                    | X                      | X                    |                       | X                     | X             | X        |                | X            | X          | TU München             |
|               |                 |                       |                  |             |           |                 |            |                       |            | X                     | X                     | X                  |                      |                        | X                    | X                     |                       | X             | X        |                | X            |            | Universität Stuttgart  |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       | X                     | X                  |                      |                        |                      | X                     |                       | X             |          | X              |              |            | TU Dresden             |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        | X                    |                       | X                     | X             | X        |                | X            | X          | Politecnico di Milano  |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        | X                    | X                     | X                     | X             | X        | X              | X            | X          | Politecnico di Torino  |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        | X                    |                       |                       | X             | X        |                |              |            | Università di Pisa     |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        | X                    |                       | X                     |               | X        |                | X            |            | Università di Roma I   |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        | X                    |                       | X                     |               | X        |                |              |            | Università di Napoli I |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        |                      |                       |                       |               | X        |                | X            |            | Cranfield University   |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        |                      |                       |                       | X             |          |                |              |            | University of Bristol  |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        |                      |                       |                       |               | X        |                | X            |            | University of Glasgow  |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        |                      |                       |                       |               |          |                | X            |            | KTH Stockholm          |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        |                      |                       |                       |               |          |                | X            | X          | TU Delft               |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        |                      |                       |                       |               |          |                |              |            | NTNU Trondheim         |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        |                      |                       |                       |               |          |                | 1            |            | ETSIA Madrid           |
|               |                 |                       |                  |             |           |                 |            |                       |            |                       |                       |                    |                      |                        |                      |                       |                       |               |          |                |              |            | IST Lisboa             |

#### Comparative scheme of the Engineering programmes' structure in continental Europe

| Country         | University          | Year 1   | Year2        | Year3      | Year 4      | Year 5     |
|-----------------|---------------------|----------|--------------|------------|-------------|------------|
|                 |                     |          |              | `          |             |            |
| FRANCE          |                     | <u> </u> |              | Luo        | (           | 12.00 6    |
|                 | ENAC Toulouse       | -        | entific      |            | énieur dir  |            |
|                 | SUPAERO Toulouse    |          | ory classes  |            | génieur dir |            |
|                 | ENSICA Toulouse     | 4        | ational      |            | génieur dir |            |
|                 | ENSMA Poitiers      | entran   | ice exam     | lng        | génieur dip | olômé      |
| GERMANY         |                     |          |              |            |             |            |
|                 | RWTH AACHEN         | Vord     | iplom        | D          | iplom- In   | genieur    |
|                 | TU BERLIN           |          | iplom        |            | iplom- In   |            |
|                 | TU BRAUNSCHWEIG     |          | iplom        | D          | iplom- In   | genieur    |
|                 | U. STUTTGART        |          | iplom        |            | iplom- In   |            |
|                 | TU MUNICH           |          | iplom        | D          | iplom- Ing  | genieur    |
|                 | TU DRESDEN          | Vord     | iplom        | D          | iplom- In   | genieur    |
| ITALY           | Politagniag MIL ANO |          |              |            | Loureor     | nagistral  |
|                 | Politecnico MILANO  |          |              |            | Laurea r    | nagistrale |
|                 | Univ. di NAPOLI     |          |              |            | Laurea r    | nagistrale |
|                 | Univ. di PISA       |          | Laurea       |            | Laurea r    | nagistrale |
|                 | Univ. di ROMA       |          |              |            | Laurea r    | nagistrale |
|                 | Politecnico TORINO  |          |              |            | Laurea r    | nagistrale |
| THE NETHERLANDS | TU DELFT            |          | BSc. AE      |            | M           | Sc. AE     |
| NORWAY          | NTNU TRONDHEIM      |          | MSc. Mec     | hanical E  | Ingineerin  | g          |
|                 |                     |          |              |            |             | -          |
| PORTUGAL        | IST LISBOA          | Li       | cenciatura e | ngenheria  | a aeroespa  | icial      |
| SPAIN           | ETSIA MADRID        |          | Ingeni       | ero aeron  | áutico      |            |
| SWEDEN          | KTH STOCKHOLM       |          | MSc. Eng     | ineering ( | Civilinge   | njör)      |
| Nominal Student |                     | 1        | 9 20         | 21         | 2           | 2 2        |

## Poziomy kształcenia i typy dyplomów

#### Struktura programów studiów

#### **FS : <u>FUNDAMENTAL SCIENCES</u>** <u>Przedmioty Podstawowe – matematyczno-fizyczne</u> They are the background scientific knowledge required to understand and utilise techniques and methods used in aerospace engineering. FS include courses such as mathematics, physics, chemistry, computer science basics, etc...

#### ES : <u>ENGINEERING SCIENCES</u> Przedmioty Podstawowe - Inżynieryjne

They are sciences applied to general engineering purposes, such as mechanics, fluid mechanics, gas dynamics, electronics, telecoms, software engineering, simulation tools and techniques, etc...

#### AE : <u>AEROSPACE ENGINEERING SCIENCES</u>Przedmioty Kierunkowe

Among engineering sciences, those having a strong orientation towards aerospace have been identified separately. They include: aerodynamics, propulsion techniques, aeronautical structures & materials, aircraft design, flight dynamics, air traffic control, aircraft operations, aviation safety, avionics, space engineering, others...

#### GC : <u>GENERAL COURSES</u> HES

Today, engineers can no longer limit themselves to purely technological projects, and they are in need of knowledge and skills in various "soft" sciences domains. These general courses include a large variety of topics (often proposed as optional courses) such as economics, finance, management, project management, history of aviation & industry, foreign languages, etc...



Relacje pomiędzy grupami przedmiotów - Europa kontynentalna, członkowie sieci PEGASUS

Fundamental Sciences Engineering Sciences Aerospace Eng. Incl. Industrial and Final Year Project General Courses

#### Relacje pomiędzy grupami przedmiotów – Wielka Brytania, członkowie sieci PEGASUS



| 1  | Aerodynamics, Gas            |
|----|------------------------------|
|    | Dynamics, Heat Transfer      |
| 2  | S truc ture s, Mate rials    |
| 3  | Aircraft Design,             |
|    | Subsystems & Integration     |
| 4  | Rotary Wing Systems &        |
|    | Non-Convential Aircraft      |
| 5  | Performance, Stability &     |
|    | Control, Flight Dynamics     |
| 6  | Propulsion & Combustion      |
| 7  | Production & Maintenance     |
| 8  | Aircraft Operations,         |
|    | Aviation Safety,             |
|    | Airlines/Airports Operations |
|    | & Management, Air Traffic    |
|    | Management                   |
| 9  | Aircraft Navigation,         |
|    | Avionics, Communications     |
| 10 | Space Engineering &          |
|    | Technologies                 |

## **Course's Categories**







Page 19















Wszystkie specjalizacje!



Page 27



Wszystkie specjalizacje!

### Kto może ubiegać się o członkostwo w sieci PEGASUS

The members of Pegasus are European Institutions of higher education, training engineers which meet the following criteria:

- provision of high level scientific education in aerospace engineering related fields, which corresponds to the standard of duration of studies which is the longest in the concerned country (*poziom kształcenia*);
- national and international recognition of the quality of the aerospace engineering disciplines tuition level (*jakość kształcenia*);
- internationally recognised research achievements (*poziom badań*);
- ➤ a firmly established tradition of student mobility within Europe (*międzynarodowa wymiana studentów*).

# **ADMISSION CRITERIA** - General

1. Be a public and/or non-profit institution of higher education in aeronautical / aerospace engineering.

2. Have its main base of operations in a EU country.

3. Demonstrate the willingness to sign the PEGASUS Charter and to actively commit to the PEGASUS network activities including working groups.

# **ADMISSION CRITERIA** - Excellence

4. Have a good reputation and quality recognition (e.g. national accreditation by an official body) in education and research, nationally and internationally.

5. Deliver one or several degrees in aeronautical / aerospace engineering in compliance with the European Bologna orientation (LMD, +5 level or M for Aerospace Engineering or higher).

6. The main curriculum in aeronautical / aerospace engineering should comprise a sufficient base in Fundamental Sciences (minimum 15%), General Courses including foreign languages, and Engineering Sciences (minimum 40%) of which at least 50% should be Aeronautical / Aerospace Engineering Sciences (that is: minimum 20% of the overall program, or 60 ECTS for a 5-year programme).

7. Have or plan to reach a sufficient volume of activity in terms of student output: 30 graduates per year at the +5 level or higher in Aeronautical / Aerospace should be considered as the minimum target volume.

8. (supporting, non-mandatory criterion) Produce a record of first employment of the graduates in industry over the last 3 years, showing the relevance of the engineering programme for the aerospace industry.

# ADMISSION CRITERIA -International Cooperation

9. Produce a list of active partnership agreements with aeronautical / aerospace faculties or departments of foreign partner universities recognised at the international level, including at least 3 members of the PEGASUS network from at least 2 different countries. **???** 

10. Produce a record of student and faculty exchanges with foreign universities over the last 3 years.

11. (supporting, non-mandatory criterion) Produce a record of research activities involving international partnership.

End of criteria list

## **PEGASUS Questionnaire**

<u>Criterion C/10</u>: Produce a record of student and faculty exchanges with foreign universities over the last 3 years (average)

Number of incoming and outgoing students per year (average) at the "graduate"level (5year programs listed before)

|                           |            | Gradua | te level        |      |  |  |
|---------------------------|------------|--------|-----------------|------|--|--|
|                           | Within PEG | ASUS   | Outside PEGASUS |      |  |  |
| Incoming students (total) |            |        |                 |      |  |  |
| Outgoing students (total) |            |        |                 |      |  |  |
| out of which:             | University | Flux   | University      | Flux |  |  |
| - main incoming flux :    |            |        |                 |      |  |  |
| - main outgoing flux :    |            |        |                 |      |  |  |

| Number of incoming and outgoing professors per year (average) |                  |           |                 |  |  |  |  |  |  |  |
|---------------------------------------------------------------|------------------|-----------|-----------------|--|--|--|--|--|--|--|
| Nature of activity                                            | Average Duration | Direction | Number of profs |  |  |  |  |  |  |  |
| Teaching                                                      |                  | Incoming  |                 |  |  |  |  |  |  |  |
|                                                               |                  | Outgoing  |                 |  |  |  |  |  |  |  |
| Research                                                      |                  | Incoming  |                 |  |  |  |  |  |  |  |
|                                                               |                  | Outgoing  |                 |  |  |  |  |  |  |  |
| <b>Both Teaching &amp; Research</b>                           |                  | Incoming  |                 |  |  |  |  |  |  |  |
|                                                               |                  | Outgoing  |                 |  |  |  |  |  |  |  |
| Other (specify)                                               |                  | Incoming  |                 |  |  |  |  |  |  |  |
|                                                               |                  | Outgoing  |                 |  |  |  |  |  |  |  |

| Chapter 36 | Department of Aeronautical and Astronautical Engineering,<br>the Ohio State University                                           |
|------------|----------------------------------------------------------------------------------------------------------------------------------|
| Chapter 37 | Aeronautical and Astronautical Engineering Education at the<br>University of Illinois                                            |
| Chapter 38 | Aerospace Education and Research at Princeton<br>University 1942–1975                                                            |
| Chapter 39 | Aerospace Engineering at the University<br>of Southern California                                                                |
| Chapter 40 | Aeronautical Science and Engineering at the<br>University of California Davis, CA553                                             |
| Chapter 41 | Aerospace Engineering in Buffalo—The X-factor558                                                                                 |
| Chapter 42 | Fifty Plus Years of Engineering Excellence: Department<br>of Aerospace Engineering at the University of Maryland567              |
| Chapter 43 | Some History and Recollections of the Aero Program<br>at Rensselaer                                                              |
| Chapter 44 | The Aerospace Program at Boston University and the<br>Origins of the College of Engineering                                      |
| Chapter 45 | Aerospace Engineering and Its Place in the History<br>of the University of Arizona604                                            |
| Chapter 46 | Aerospace Engineering at the University of Tennessee                                                                             |
| Chapter 47 | A Brief History of Aerospace Engineering<br>at Syracuse University                                                               |
| Chapter 48 | The Early History of Aeronautics at Stanford University<br>and the Founding of the Department of Aeronautics and<br>Astronautics |
| Chapter 49 | The Evolution of Aerospace Engineering Education<br>at California State Polytechnic University, Pomona                           |

Programy kształcenia w USA: 51 wydziałów cywilnych, 5 wojskowych, 9 specjalnych (zastrzeżonych)

#### Table 2. Sample aeronautical/aerospace engineering curricula

| Торіс                                                           | 1948 | 1973* | 2003            |   |
|-----------------------------------------------------------------|------|-------|-----------------|---|
| English including composition                                   | 8    | 6     | 6               | - |
| Humanities and social science                                   | 16   | 14    | 15              | - |
| Math through differential & integral calculus                   | 16   | 13    | 12              |   |
| Additional engineering math including num. meth.                | 0    | 8     | $\frac{12}{10}$ | - |
| Chemistry with lab                                              | 8    | 5     | 4               | - |
| Physics with lab                                                | 8    | 8     | 8               | - |
| Science elective                                                | 0    | 2     | 3               | - |
| Physical education or military science                          | 4    | 2     | 0               | - |
| Elective                                                        | 6    | 6     | 0               | - |
| Computer programming                                            | 0    | 1     | 2               | 1 |
| Intro. to engineering                                           | 0    |       | 0               | 1 |
| Engineering drawing computer-aided graphics                     | 4    | 2     | 3               | 1 |
| Elementary design                                               | 3    | 0     | 0               | 1 |
| Mechanisms & kinematics                                         | 3    | 0     | 0               | 1 |
| Statics, dynamics & mechanics of materials                      | 9    | 6     | 9               | 1 |
| Thermodynamics                                                  | 3    | 3     | 3               | 1 |
| Electrical engineering                                          | 6    | 3     | 4               | 1 |
| Materials behavior & selection                                  | 3    | 2     | 3               | 1 |
| Engineering lab courses                                         | 9    | 2     | 5               | 1 |
| Manufacturing operations                                        | 6    | 0     | 1               | 1 |
| Specifications & industrial safety                              | 3    | 0     | 0               | 1 |
| Elements of aeronautics & astronautics                          | 0    | 2     | 0               | 1 |
| Fluid mechanics                                                 | 0    | 2     | 3               | 1 |
| Aerodynamics                                                    | 6    | 12    | 3               | ┫ |
| Astrodynamics                                                   | 0    | 0     | 3               |   |
| Structures                                                      | 6    | 9     | 3 .             | ┥ |
| Stability & control of aircraft                                 | 0    | 0     | 3               | ] |
| Propulsion                                                      | 5    | 3_    | 3               |   |
| Control systems                                                 | 0    | 0     | 3               |   |
| Electives restricted to approved technical or aerospace courses | 5    | 12    | 12              |   |
| Professional development                                        | 2    | _     | 1               |   |
| airplane design _ aerospace design                              | 6    | 4     | 6 .             |   |
| Total semester hours                                            | 145  | 134   | 128             | 1 |

#### Aeronautical & Aerospace Engineering at the University of Florida

\* Quarter system being used this year, credits converted to semester hours.

\_ Denotes change in nomenclature between 1946 and 1973, but topics seem comparable.

#### Table 2 Aeronautical Engineering Curriculum in 1942

|                                      | mmon Fr | eshman Year                            |     |
|--------------------------------------|---------|----------------------------------------|-----|
| First Semester                       | Hrs     | Second Semester                        | Hrs |
| Math. 2a, College Algebra            | 3       | Math. 4, Analytical Geometry           | 5   |
| Math. 3, Plane Trigonometry          | 2       | Engl. 2E, Rhetoric II                  | 2   |
| Engl. 1E, Rhetoric I                 | 3       | Chem. 3E, Inorg. Chem. and Qual. Anal. | 4   |
| Chem. 2E, Inorganic Chemistry        | 4       | Engr. Dr. 2, Machine Drawing           | 2   |
| Engr. Dr. 1, Lettering and F.H. Draw | 2       | Engr. Dr. 3, Descriptive Geometry      | 3   |
| C.E. 5, Engineering Lectures         | 1       | M.C. 8, Metal Working                  | 1   |
| Gym. or ROTC                         |         | Gym. or ROTC                           |     |
| Total                                | 15      | Total                                  | 17  |

#### Sophomore Year

| First Semester                     | Hrs | Second Semester                        | Hrs |
|------------------------------------|-----|----------------------------------------|-----|
| Math. 5E, Calculus I               | 4   | Math. 7E, Calculus II                  | 4   |
| Phys. 7a, General Engrg. Physics   | 5   | Phys. 7b, General Engrg. Physics       | 5   |
| Econ. 1E, Introductory Economics   | 3   | A.M. 1, Statics                        | 2   |
| M.C. 1, Foundry Practice           | 1   | M.C. 2, 6, Pattern and Mach. Tool Work | 2   |
| A.E. 1, Aeronautics                | 2   | M.E. 3, Mechanisms                     | 3   |
| A.E. 2, Navigation and Meteorology | 3   | M.E. 154, Heating and Air Conditioning | 2   |
| Total                              | 18  | Total                                  | 18  |

|                                | Junio | r Year                              |      |
|--------------------------------|-------|-------------------------------------|------|
| First Semester                 | Hrs   | Second Semester                     | Hrs  |
| M.E. 151, Thermodynamics       | 3     | M.E. 150, Machine Design            | 5    |
| A.M. 50, Dynamics              | 3     | A.M. 55, Hydraulics                 | 3    |
| A.M. 51, Strength of Materials | 4     | M.E. 159, I.C. Engines              | 3    |
| A.M. 52, Testing of Materials  | 1     | Engl. 56, Technocal Report II       | 0.5  |
| M.C. 50, Heat Treatment        | 1     | A.E. 101, Aerodynamics II           | 3    |
| Engl. 59, Advanced Composition | 3     | A.E. 102, Aerodynamics Laboratory I | 2    |
| Engl. 6, Technical Report I    | 0.5   | A.E. 105, Aircraft Matl's and Proc. | 2    |
| A.E. 100, Aerodynamics I       | 3     |                                     |      |
| Total                          | 18.5  | Total                               | 18.5 |

| SeniorYear                           |     |                                            |     |  |  |  |  |  |  |
|--------------------------------------|-----|--------------------------------------------|-----|--|--|--|--|--|--|
| First Semester                       | Hrs | Second Semester                            | Hrs |  |  |  |  |  |  |
| E.E. 71, Direct Currents             | 3   | A.E. 151, Airplane Design II               | 5   |  |  |  |  |  |  |
| E.E. 91, Electrical Laboratory       | 1   | M.E. 53, Seminar                           | 0.5 |  |  |  |  |  |  |
| A.E. 162, Aero Structures            | 3   | A.E. 166, Aero Engine Laboratory           | 1.5 |  |  |  |  |  |  |
| A.E. 163, Aero Structures Laboratory | 2   | C.E. 267, Statically Indeterminate Struct. | 3   |  |  |  |  |  |  |
| A.E. 150, Airplane Design I          | 3   | E.E. 72, Alternating Currents              | 3   |  |  |  |  |  |  |
| C.E. 56, Industrial Administration   | 3   | Nontechnical option                        | 2   |  |  |  |  |  |  |
| Nontechnical option                  | 3   | Technical option                           | 2   |  |  |  |  |  |  |
| Total                                | 18  | Total                                      | 17  |  |  |  |  |  |  |

#### Aerospace **Engineering at the University of Kansas**, 1942

Page 36

#### Grand Total 140 hours

#### Table 3 Aerospace Engineering Curriculum in 2002

| Freshman Year                       |     |                                       |      |  |
|-------------------------------------|-----|---------------------------------------|------|--|
| First Semester                      | Hrs | Second Semester                       | Hrs  |  |
| Math. 121, Calculus I               | 5   | Math 122, Calculus II                 | 5    |  |
| Engl. 101, Composition              | 3   | Engl. 102, Composition and Literature | 3    |  |
| Chem. 184, Chemistry I              | 5   | Phys. 211, Physics I                  | 4    |  |
| AE 245, Introd. To Aerospace Engrg. | 3   | HSS* Elective                         | 3    |  |
| AE 290, Aerospace Colloquiem        | 0.2 | CPE 121, Fortran                      | 3    |  |
|                                     |     | AE 291, Aerospace Colloquiem          | 0.3  |  |
| Total                               |     | Total                                 | 18.3 |  |
| 16.2                                |     |                                       |      |  |

#### Aerospace Engineering at the University of Kansas, 2002

|                                    | Sophon | nore Year                     |      |                                      |
|------------------------------------|--------|-------------------------------|------|--------------------------------------|
| First Semester                     | Hrs    | Second Semester               | Hrs  |                                      |
| Math. 250, Math. Of Engrg. Systems | 5      | Math 124, Calculus III        | 3    |                                      |
| CE 301, Statics and Dynamics       | 5      | AE 445, Aerodynamics          | 3    | -                                    |
| Phys. 212, Physics II              | 4      | Phys. 351, Physics III        | 3    |                                      |
| AE 345, Fluid Mechanics            | 2      | ME 312, Thermodynamics        | 3    |                                      |
| AE 290, Aerospace Colloquiem       | 0.2    | CE 310, Strength of Materials | 4    |                                      |
|                                    |        | AE 291, Aerospace Colloquiem  | 0.3  | Spostrzeżenie: brak przedmiotów      |
| Total                              |        | Total                         | 16.3 |                                      |
| 16.2                               |        |                               |      | szczegółowych, wąsko ukierunkowanych |
|                                    |        |                               |      |                                      |

Hrs

3

| Junior Year |                            |  |  |  |  |
|-------------|----------------------------|--|--|--|--|
| Hrs         | Second Semester            |  |  |  |  |
| 3           | AE 508, Aero Structures II |  |  |  |  |
| <br>        |                            |  |  |  |  |

First Semester

Ae 507, Aero Structures I

|   |                               |       | ,                             |      |
|---|-------------------------------|-------|-------------------------------|------|
|   | AE 550, Dynamics of Flight I  | 3     | AE 551, Dynamics of Flight II | 4    |
|   | AE 571, Reciprocating Engines | 3     | AE 572, Jet Propulsion        | 3    |
| 0 | AE 545, Aerodynamics          | 5     | AE 421, Computer Graphics     | 4    |
|   | EECS 319 Circuits             | 4     | AE 430, Aero Instrumentation  | 3    |
|   | AE 290, Aerospace Colloquiem  | 0.2   | AE 291, Aerospace Colloquiem  | 0.3  |
|   |                               | Total | Total                         | 17.3 |
|   | 18.2                          |       |                               |      |

|                                     | Senic | or Year                      |      |
|-------------------------------------|-------|------------------------------|------|
| First Semester                      | Hrs   | Second Semester              | Hrs  |
| AE 521, Aircraft Design I           | 4     | AE 522, 523 or 524 Design II | 4    |
| AE 510, Materials and Manufacturing | 4     | TE/HSS* Electives            | 12   |
| TE/HSS* Electives                   | 9     | AE 291, Aerospace Colloquiem | 0.3  |
| AE 590, Senior Seminar              | 1     |                              |      |
| AE 290, Aerospace Colloquiem        | 0.2   |                              |      |
| Total                               | 18.2  | Total                        | 16.3 |

Grand Total 137 hours \* TE stands for Technical Electives, HSS stands for Humanity or Social Science Electives TE electives must total 10 hours, HSS electives must total 14 hours

| Fre                                                                      | shu | nan Year                                                                |               | Aerospace           |
|--------------------------------------------------------------------------|-----|-------------------------------------------------------------------------|---------------|---------------------|
| Basic Engineering 10<br>Chemistry 5 <sup>1</sup>                         | 5   | Basic Engineering 20<br>Math 15 <sup>4</sup><br>Physics 23 <sup>4</sup> | 3<br>4<br>4   | Engineering at      |
| English 20<br>Math 14 <sup>4</sup><br>H/SS History elective <sup>2</sup> | 4   | H/SS Economics elective <sup>3</sup>                                    | 4<br><u>3</u> | University of       |
| Semester Hours                                                           | _   | Semester Hours                                                          | 14            | <b>Missouri-Rol</b> |
|                                                                          |     | nore Year                                                               |               | 2003                |
| Comp Sci 73-Basic Scientific Programming                                 | 2   | AE 180-Intro to Aerospace Design                                        | 2             |                     |
| Comp Sci 77-Computer Programming Lab                                     | 1   | EMech 160 <sup>5</sup> -Eng Mechanics-Dynamics                          | 3             |                     |
| Bas Eng 50 or 51-Eng Mech-Statics                                        | 3   | ME 219 <sup>4,5</sup> -Thermodynamics                                   | 3             |                     |
| Math 22 <sup>4</sup> -Calculus/Analytic Geometry III1                    | 4   | Math 204-Elementray Differential Equations                              | 3             |                     |

Semester Hours.....

Mat AE 161-Aerospace Vehicle Performance..... Somester Hours

| Semester | nouis | • | • | • | • | • | ٠ |
|----------|-------|---|---|---|---|---|---|
|          |       |   |   |   |   |   |   |

Semester Hours..... 15

| J  | Junior Year |                                             |  |  |  |  |
|----|-------------|---------------------------------------------|--|--|--|--|
| •• | 3           | AE 251 <sup>4</sup> -Aerospace Structures I |  |  |  |  |
| •• | 3           | AE 261-Flight Dynamics and Control          |  |  |  |  |
|    | 3           | AE 271-Aerodynamics II                      |  |  |  |  |
|    | 3           | AE 282-Experimental Methods in AE I         |  |  |  |  |
| •  | <u>3</u>    | Elective/Free <sup>10</sup> 3               |  |  |  |  |
|    |             | Elective/Communications <sup>8</sup>        |  |  |  |  |
|    | 15          | Semester Hours                              |  |  |  |  |

Elective/Literature.....

#### **Senior Year**

<u>3</u>

17

| AE 210-Seminar                                   |             | AE 233-Intro to Aerothermochemistry              |
|--------------------------------------------------|-------------|--------------------------------------------------|
| AE 235-Aircraft & Space Vehicle Propulsion       | 3           | AE 281-Aerospace Systems Design II               |
| AE 253-Aerospace Structures II                   | 3           | Elective/Technical <sup>7</sup>                  |
| AE 280-Aerospace Systems Design I                |             | Elective/Technical <sup>7</sup>                  |
| AE 283-Experimental Methods in AE II             | 2           | Elective/Free <sup>10</sup>                      |
| Elective/Technical <sup>7</sup>                  | 3           | Elective/Humanities/Social Sciences <sup>9</sup> |
| Elective/Humanities/Social Sciences <sup>9</sup> | 3           |                                                  |
| Semester Hours                                   | 10 Total 10 | Semester Hours                                   |

at the y of olla,



3

3 17

3

3

3

2

<u>3</u> 17

3

3

3

3

3

3

15

| AE 235-Aircraft & Space Vehicle Propulsion       |  |
|--------------------------------------------------|--|
| AE 253-Aerospace Structures II                   |  |
| AE 280-Aerospace Systems Design I                |  |
| AE 283-Experimental Methods in AE II             |  |
| Elective/Technical <sup>7</sup>                  |  |
| Elective/Humanities/Social Sciences <sup>9</sup> |  |
| Semester Hours                                   |  |

Figure (4) UMR team with their winning aircraft at the Society of Automotive Engineers Heavy Lift Competition (DeLland, Florida, April 1999)

#### Table1: A comparison of Aeronautical Engineering Curriculum from 1934 and Aerospace Engineering curriculum from 2003.

| Engineering curriculum from 2003. |                                                                    |
|-----------------------------------|--------------------------------------------------------------------|
| 1934 COURSE OUTLINE               | 2002 COURSE OUTLINE                                                |
|                                   |                                                                    |
| FIRST TERM                        | SEMESTER I                                                         |
| Aerodynamics I                    | Engineering Chemistry                                              |
| Engineering Drawing I             | Advanced Writing for Professionals                                 |
| Aircraft Materials                | Freshmen Engineering I                                             |
| Metals Lecture /Lab               | Engineering Calculus I                                             |
| Welding Lecture / Lab             | Theological Foundations                                            |
| Instruments Lecture / Lab         |                                                                    |
| SECOND TERM                       | SEMESTER 2                                                         |
| Woodworking Lecture / Lab         | Intro to Computer Science                                          |
| Parachutes                        | Intro to Computer Science                                          |
| Radio                             | Engineering Calculus II                                            |
|                                   |                                                                    |
| Fabric & Finishing Lecture / Lab  | Engineering Physics I / Lab<br>Humanities/Social Sciences Elective |
| Air Law                           | Humanities/Social Sciences Elective                                |
| Assembly and Rigging              |                                                                    |
| THIRD TERM                        | SEMESTER 3                                                         |
| Primary Engines                   | Engineering Shop Practice                                          |
| Primary & Advanced Engines        | Small Group Presentation                                           |
| Advanced Engines                  | Statics                                                            |
| Propellers / Lab                  | Engineering Physics II / Lab                                       |
| Electrical Equipment / Lab        | Engineering Calculus III                                           |
|                                   |                                                                    |
| FOURTH TERM                       | SEMESTER 4                                                         |
| Mathematics I                     | Introduction to Aero & Astro                                       |
| Mathematics II                    | Electrical Engineering / Lab                                       |
| Engineering Drawing II            | Dynamics                                                           |
| Physics I                         | Fluid Dynamics / Lab                                               |
| Air Transport Operation           | Differential Equations                                             |
|                                   |                                                                    |
| FIFTH TERM                        | SEMESTER 5                                                         |
| Mathematics III                   | Performance                                                        |
| Engineering Drawing III           | Mechanics of Solids / Lab                                          |
| Physics II                        | Machine Design                                                     |
| Elements of Mechanism             | Linear Vibrations                                                  |
| Mechanics I                       | Advanced Mathematics for Engineers                                 |
|                                   | Probability and Statistics                                         |
| SIXTH TERM                        | SEMESTER 6                                                         |
| Mathematics IV                    | Gas Dynamics                                                       |
| Mechanics II                      | Aerodynamics                                                       |
| Machine Design                    | Astrodynamics                                                      |
| Business English                  | Aerospace Structures I                                             |
| Commercial Law                    | Linear Systems                                                     |

Aerospace Engineering at the Parks College of Engineering & Aviation, 2003, 1/2

## Aerospace Engineering at the Parks College of Engineering & Aviation, 2003, 2/2

| Ethics                              |
|-------------------------------------|
|                                     |
| SEMESTER 7                          |
| Propulsion                          |
| Aerospace Lab                       |
| Stability & Control                 |
| Aerospace & Structures II           |
| Flight Vehicle Analysis & Design I  |
| Engineering Ethics                  |
|                                     |
| SEMESTER 8                          |
| Heat Transfer                       |
| Flight Vehicle Analysis & Design II |
| Cultural Diversity                  |
| Technical Elective                  |
| Technical Elective                  |
|                                     |
|                                     |

## San Diego State University



drop after 1991.

Fig. 2 The AE department in the midst of the 'good years', circa 91. From left to right, sitting: Prof. Faulkner, Prof. Dharmarajan, Prof. Pierucci, Prof. Nosseir, Prof. Lyrintzis, Prof. Narang. Standing, from left: Prof. Katz, Prof. Conly, Prof. Wang, Prof. Plotkin, secretary Helen, Prof. Krishnamoorthy, Prof. McGhie, and technical director Johansson.

#### 13 prof.+ 3 tech.+4 admin.officers

Num.of stud.per 1 staff member=

500/20=25

## Wnioski

•PW-MEiL-LiK posiada wiele atrybutów dobrego programu na poziomie europejskim czy amerykańskim (porównywalne grupy przedmiotów; akredytacja; mobilność studentów; badania w obszarze LiK; ...). Słabe strony: niska mobilność kadry; rozdrobnienie przedmiotów; niski wskaźnik studenci/pracownicy;

•Konieczny kolejny krok</u>: przystąpienie do sieci PEGASUS, poprawa jakości kształcenia; poszerzenie partnerstwa z czołowymi Uniwersytetami; ...

•Czy stać nas na wiele specjalności? Czy specjalności mają być dopasowane do potrzeb przemysłu zachodniego działającego na obszarze Polski, czy do potrzeb przemysłu europejskiego na obszarze Europy, czy do strategii rozwoju polskiego przemysłu?

## Materiały źródłowe

- 1. PEGASUS Partnership of a European Group of Aeronautics and Space Universities, 2nd Edition, Toulouse, March 2005.
- 2. Aerospace Engineering Education During the First Century of Flight, Edited by B.McCormick, C.Newberry, E.Jumper, AIAA, Reston USA, 2004, ISBN 1-56347-710-6.