
 

 

State-of-the-Art in Energy Optimization for Quadcopter UAVs: Trends, 
Techniques, and Future Directions 

Mohammed Edawdi1, Sara Waśniewska1, Marcin Żugaj1 

1Warsaw University of Technology 

 
Abstract 

As quadcopter Unmanned Aerial Vehicles (UAVs) become increasingly prevalent in 

applications such as delivery services, environmental monitoring, and aerial photography, 

optimizing their energy consumption remains a paramount challenge. This paper provides a 

comprehensive review of the latest trends and state-of-the-art techniques in energy 

optimization for quadcopter UAVs, addressing this critical aspect to enhance operational 

efficiency and extend mission durations. 

We systematically examine various strategies, including flight path optimization algorithms that 

account for wind conditions and terrain features, adaptive control systems that dynamically 

adjust flight parameters in real-time, and models and simulations for accurate energy 

consumption estimation. By analyzing recent advancements and comparing their 

effectiveness, we highlight both the achievements and gaps in the field.  

Key findings indicate significant progress in the development of sophisticated algorithms and 

control systems that contribute to energy savings. Integrating environmental factors, such as 

wind patterns and turbulence, into flight planning and control can lead to substantial 

improvements in energy efficiency. Emerging trends, such as the use of machine learning 

techniques for predictive modeling and real-time optimization, hold great potential for future 

research and application. 

Keywords: Energy Optimization, Quadcopter UAVs, Flight Path Optimization, Adaptive Control 
Systems, Environmental Condition Management 

1. Introduction 

1.1 Purpose and Importance of Energy Optimization in Quadcopters 

The primary purpose of this review is to provide a comprehensive overview of state-of-the-art 
advancements in energy optimization for quadcopter Unmanned Aerial Vehicles (UAVs). As UAVs are 
increasingly deployed in applications like communication, surveillance, and data collection, optimizing 
their energy consumption has become critical due to their limited energy storage capacity. Enhancing 
energy efficiency is essential for extending flight duration, improving operational performance, and 
reducing costs. 

Several key areas will be explored in this review: 

1.1.1 Trajectory Optimization 

Optimizing the UAV's flight path is crucial for minimizing energy consumption. By considering kinematic 
and dynamic equations, smooth and practical 3D trajectories can be designed, enhancing energy 
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efficiency by minimizing unnecessary energy expenditure during flight [1], [2], [3], [4]. Path planning 
algorithms that account for environmental conditions, such as wind, further reduce energy consumption 
by optimizing rotor speed and acceleration [5]. 

1.1.2 Energy Management Strategies 

Advanced power management strategies, including the integration of hybrid power sources like solar 
and hydrogen energy, improve energy efficiency by optimizing power distribution and enhancing fuel 
economy [6], [7], [8]. For instance, hybrid electric fuel cell-powered drones benefit from strategies that 
improve power supply system efficiency and reduce hydrogen consumption, thereby extending 
endurance and reducing operational costs [6]. 

1.1.3 Reinforcement Learning Approaches 

Machine learning techniques, particularly reinforcement learning, have been employed to dynamically 
optimize UAV trajectories and resource allocation. These approaches demonstrate significant 
improvements in energy efficiency compared to traditional methods by designing 3D trajectories that 
account for interference and environmental factors [9], [10], [11], [4]. Energy-efficient attitude control 
using reinforcement learning minimizes rapid changes in motor speeds, reducing battery depletion and 
extending flight time [11]. 

1.1.4 Wireless Power Transfer and Energy Harvesting 

Innovative solutions like UAV-enabled wireless power transfer and energy harvesting provide 
continuous power supply to UAVs and ground devices, reducing overall energy consumption [12], [2], 
[13]. Integrating reconfigurable intelligent surfaces (RIS) in UAV-enabled wireless power transfer 
systems enhances energy efficiency by optimizing the UAV's trajectory, hovering time, and reflection 
coefficients [12]. 

1.1.5 Resource Allocation in Communication Networks 

Optimizing resource allocation in UAV-assisted communication networks is critical for maximizing 
energy efficiency. Joint optimization frameworks that consider UAV trajectory, device association, user 
scheduling, and transmit power allocation can minimize total energy consumption in UAV-assisted IoT 
networks, achieving substantial energy savings compared to traditional algorithms [9], [7], [14]. 
Techniques such as the Dinkelbach algorithm and successive convex approximation effectively solve 
complex optimization problems in mobile edge computing scenarios, balancing the trade-off between 
completion time and energy consumption [7], [15]. 

1.2 Overview of the paper structure 

This review paper is organized to provide a comprehensive examination of key advancements in energy 
optimization for quadcopter UAVs. It begins with an introduction outlining the purpose and importance 
of energy efficiency in quadcopters. 

Section 2 presents the background and motivation, offering an overview of quadcopters and highlighting 
the challenges associated with energy consumption. 

Section 3 reviews existing literature on control systems and trajectory optimization, discussing various 
strategies and methodologies aimed at enhancing energy efficiency. 

Section 4 explores different energy consumption models used to estimate and optimize energy use in 
quadcopters, assessing their features and applicability. 

Section 5 provides a comparative analysis of the reviewed approaches, identifying strengths, 
weaknesses, and gaps in current research. 

Section 6 examines emerging trends and future directions in energy optimization, considering practical 
feasibility and potential impact on the UAV industry and society. 

The paper concludes with Section 7, summarizing key insights and offering suggestions for future 
research to advance energy optimization in quadcopter UAVs. 

2. Background and Motivation 

2.1 Introduction to Quadcopters and Their Applications 

Quadcopters, four-rotor UAVs known for their versatility and ease of control, have gained significant 
popularity due to their compact size and vertical takeoff and landing (VTOL) capabilities, making them 
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suitable for operations in confined spaces and challenging environments [16]. They are utilized in a 
wide range of applications: 

Industrial Sector: Employed in precision agriculture for autonomous monitoring of crop health and 
optimization of farming practices [17], and in infrastructure inspections such as tunnels and railways, 
navigating hazardous environments to provide real-time data [18]. 

Military and Defense: Used in surveillance and reconnaissance missions, providing real-time 
intelligence without risking human lives [18]. Advancements in control algorithms and autonomous 
systems have enhanced their reliability in dynamic environments [19]. 

Research and Development: Serve as platforms for testing new control strategies and dynamic models. 
Control techniques like Model Predictive Control, Linear Quadratic Regulators, and Proportional Integral 
Derivative (PID) controllers have been explored to improve performance and stability [20]. Innovations 
like self-foldable and self-deployable designs increase their portability and adaptability [21]. 

2.2 Challenges associated with energy consumption 

Understanding the factors influencing energy consumption in quadcopters is crucial for optimizing their 
performance and efficiency. Key factors include dynamic behaviors, aerodynamic models, rotor 
configurations, and regulatory impacts. 

2.2.1 Dynamic Behaviors and Control Systems 

Dynamic behaviors such as rotation angles of arms, rotor angular velocities, and path curvature 
changes significantly influence energy consumption, necessitating dynamic modeling to understand 
their impact on power usage [22]. Implementing control laws, like adaptive controller-based 
backstepping methods, ensures stability and efficient trajectory tracking, affecting energy consumption 
[22]. 

2.2.2 Aerodynamic Models and Rotor Configurations 

The choice of aerodynamic model impacts energy consumption. For example, the Lumped Blade (LB) 
model predicts 36% higher energy usage than the Blade Element Theory (BET) model [23]. Rotor 
configurations also affect energy demands, with different groupings causing a 4.7–4.9% difference in 
energy consumption during basic trajectories [23]. 

2.2.3 Regulatory and Environmental Factors 

Regulatory compliance can significantly increase energy consumption; altered flight paths due to 
airspace regulations may lead to up to a 400% increase in energy demand [24]. Environmental factors, 
like urban versus rural settings, further influence energy usage due to differing regulations and 
operational conditions [24]. 

2.2.4 General Factors and Energy Models 

A comprehensive understanding of energy consumption involves examining general factors and energy 
models affecting UAVs during missions, identifying specific factors and categorizing their impacts [25]. 
Dynamic models can analyze the energy efficiency of quadcopters during different maneuvers, aiding 
in energy-efficient path planning [26]. Technological advancements in energy storage and management 
could further influence energy consumption patterns, mitigating some of the demands imposed by these 
factors. 

3. Review of Existing Literature 
3.1 Control Systems and Trajectory Optimization 

Improving the energy efficiency of quadrotors can be achieved through advanced control systems and 
optimal trajectory planning. By refining control laws and optimizing flight paths, significant 
enhancements in performance, stability, and energy consumption can be realized. 

3.1.1 Energy-Efficient Control Methods 

Various energy-efficient control strategies have been proposed: 

Dynamic Speed Profile Control: Adjusting flight speed based on path curvature minimizes flight time 
and path-following errors. A kinematic path-following controller uses the maximum allowable speed for 
straight sections and reduces speed in curved paths, enhancing energy efficiency [27]. 
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Optimized Controller Gains: Low- and medium-level control techniques track optimal, smooth 
trajectories to improve energy savings. Controller gains are optimized offline using algorithms like the 
Artificial Bee Colony to balance tracking performance and energy consumption [28]. 

Optimal Control for Trajectory Generation: Formulating optimal control problems helps generate energy-
efficient trajectories between two states. By optimizing control variables like angular accelerations of 
the motors, energy consumption is minimized during flight [29], [30]. 

Wind-Adaptive Control: Under windy conditions, energy consumption is minimized by finding optimal 
trajectories and control signals that account for environmental disturbances [5]. 

Hamiltonian Optimal Control: Using Hamiltonian equations and Lagrange multipliers, desired control 
signals are derived while accounting for system constraints, leading to energy-efficient flight paths [31]. 

Integrated Prediction, Planning, and Adaptive Control: Combining energy prediction algorithms, optimal 
path planning (e.g., K-means clustering, A-star), and adaptive neural network controllers enhances 
energy efficiency and disturbance rejection [32]. 

Neural Network Approximation: Deep neural networks approximate model predictive controllers to 
reduce computational costs, maintaining similar tracking performance with increased computational 
efficiency, leading to energy savings [33]. 

Evolutionary Algorithms for Controller Tuning: Combining trajectory design with controller gain tuning 
using metaheuristic algorithms like cuckoo search improves energy efficiency by generating smooth 
trajectories and optimizing controller gains [34]. 

Nonlinear Optimal Backstepping Control: A double-loop controller ensures stability, minimizes energy 
consumption, and achieves high-accuracy path tracking. Parameters are optimized using multi-
objective genetic algorithms [35]. 

Bounded Control Systems: Controlling roll and pitch angles within energy-efficient ranges reduces 
aggressive maneuvers and saves energy compared to traditional cascaded control systems [36]. 

Neural Network-Based Optimal Control: Adaptive search algorithms combined with neural networks 
optimize control signals for electric drives and flight control, minimizing power consumption [37]. 

Neurobiologically Inspired Controllers: Brain emotional learning-based intelligent controllers use 
cognitive functions to improve control quality, achieving precise path tracking while minimizing control 
effort [38]. 

Efficient Algorithm Replacement: Replacing high-energy algorithms with more efficient ones, such as 
lightweight object detection networks (YOLOv3) and linear active disturbance rejection controllers, 
enhances energy management [39]. 

Incremental Control Allocation: Embedding incremental control allocation in nonlinear dynamic 
inversion controllers minimizes energy increments during time steps, achieving similar trajectory 
tracking accuracy to that achieved by currently existing methods, but with reduced energy consumption 
[40]. 

Model Predictive Control Comparison: Linear and nonlinear model predictive control methods are 
compared for stable flight and energy minimization. Nonlinear MPC provides better tracking but higher 
energy usage, while linear MPC is more energy-efficient [41]. 

Speed Control with Deep Reinforcement Learning: Combining path planning with speed control using 
PID and deep reinforcement learning shortens flight time and saves energy by optimizing flight speed 
and collision avoidance [42]. 

3.1.2 Strategies for optimal trajectory planning 

Optimal trajectory planning considers both the geometric path and dynamic parameters like velocity 
and acceleration to generate smooth and energy-efficient flights [43]. Recent developments include: 

Adaptive Prediction and Planning under Disturbances: Model predictive control generates future control 
signals to minimize energy consumption under external disturbances like wind. Energy-efficient goals 
are selected based on predicted energy requirements, with online replanning to handle disturbances 
[44]. 

Optimal Control Formulations: Energy-efficient trajectories are obtained by solving constrained optimal 
control problems, where cost functions represent energy consumption modeled using rotor torques and 
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angular velocities. Techniques like Legendre-Gauss-Radau collocation are used for numerical solutions 
[45]. 

Emphasis on Flight Time: Studies highlight that flight time has a greater impact on energy consumption 
than path length, advocating for trajectory planning that minimizes time in the air [31]. 

 

Trade-off Between Acceleration and Flight Time: Cost functions balancing acceleration costs (related 
to thrust) and total flight time are optimized using Pontryagin's Minimum Principle to generate energy-
efficient trajectories [46]. 

Exploiting Dynamic Properties: Utilizing the aircraft's dynamics within the special Euclidean space 
SE(3), optimization problems are solved using Lie group variational integrators, preserving system 
geometry and improving energy efficiency [47]. 

Indirect Optimal Control Solutions: Open-loop optimal control problems are solved numerically to 
achieve stable flight with minimal thrust and high-speed trajectories, using rotor angular velocities as 
control variables [48]. 

Planar Quadrotor Trajectory Planning: For planar dynamics, minimum energy trajectories between 
resting configurations are computed using electrical models of DC motors and solved with indirect 
projected gradient algorithms [49]. 

Landing Considerations: Incorporating the ability to land at the target reduces unnecessary hover time, 
thus decreasing energy consumption. Ground contact forces are modeled to simulate landing dynamics 
[50]. 

Multi-Arc Interpolation and Disturbance Rejection: Optimal trajectories are determined using 
Pontryagin’s Maximum Principle and solved with numerical shooting methods. Backstepping controllers 
with disturbance observers ensure stability under wind disturbances [51]. 

Integrated Dynamics Modeling: A holistic approach models integrated dynamics of propeller 
aerodynamics, electromechanical motors, electronic speed controllers, battery dynamics, and rigid 
body dynamics to generate energy-efficient trajectories. This is combined with PID feedback control for 
real-time tracking [52]. 

3.1.3 Wind and Environmental Condition Management 

Optimizing energy consumption in quadcopters under varying wind conditions is crucial for extending 
flight endurance and ensuring mission success. Strategies involve developing algorithms that consider 
environmental factors like wind speed and direction to manage energy use effectively. 

Optimization Algorithms for Energy Minimization: Formulating the energy minimization problem as an 
optimal control problem allows for adjusting rotor speed and acceleration under windy conditions, 
leading to significant energy savings compared to adaptive control approaches [5]. 

Wind-Aware Path Planning: Incorporating wind conditions into route planning enables drones to adjust 
their paths to exploit favorable winds, thereby conserving energy. Simulations using real wind data 
demonstrate substantial energy efficiency gains when wind conditions are considered [53]. 

Trajectory Optimization in Windy Conditions: Determining optimal flight trajectories by considering 
quadcopter velocity, wind speed, and direction helps minimize energy consumption. Comparative 
studies show that optimal trajectory planning under varying wind conditions significantly reduces energy 
use [54]. 

3.1.4 Advanced Strategies for Path Optimization 

Optimizing quadcopter flight paths to minimize energy consumption is a critical research area involving 
advanced algorithms and optimization techniques to ensure efficiency, safety, and performance. Key 
strategies include: 

3.1.4.1  Metaheuristic Optimization Algorithms: 

Hybrid Algorithms: Combining methods like Harris Hawk Optimization with Grey Wolf Optimization 
avoids local minima and achieves fast convergence, resulting in optimal path planning with minimal 
energy and time consumption [55]. Improved Particle Swarm Optimization (PSO) algorithms, 
incorporating adaptive parameters and deep reinforcement learning techniques, enhance global search 
capabilities and reduce unnecessary energy consumption, especially in complex terrains [56], [57]. 
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Enhanced Convergence and Solution Optimality: Adaptive PSO algorithms dynamically adjust 
parameters to improve convergence speed and solution quality, using methods like chaos-based logistic 
maps and simulated annealing to avoid local minima [56], [57], [58]. 

Safety and Feasibility: Algorithms like Spherical Vector-Based PSO optimize UAV paths by 
incorporating safety and operational constraints, outperforming other PSO variants in various scenarios 
[59], [60]. 

Multi-UAV Coordination: Hybrid algorithms effectively handle multi-UAV path planning by balancing 
exploration and exploitation, resulting in feasible paths with superior accuracy and convergence speed 
[61]. 

Algorithm Performance: Comparative studies indicate that hybrid and improved PSO algorithms 
outperform traditional PSO and genetic algorithms in path quality, convergence speed, and robustness 
[62], [63]. 

3.1.4.2  Kinodynamic Path Planning and B-Spline Optimization 

Kinodynamic path searching methods find safe and feasible initial trajectories, which are then optimized 
using B-spline functions for smoothness and clearance. Differential flatness techniques manipulate 
control points via nonlinear constrained optimization to minimize energy consumption while ensuring 
dynamical feasibility [64], [65]. 

3.1.4.3  Fly-Hover-Communicate Design 

Optimizing UAV trajectories and communication time allocation among ground nodes minimizes total 
energy consumption. The fly-hover-communicate design transforms the problem into a discretized 
equivalent for easier optimization, effectively reducing energy usage [66]. 

3.1.4.4  Model Predictive Control (MPC) 

Time-Optimal Trajectories: MPC and Model Predictive Contouring Control (MPCC) generate near time-
optimal trajectories in real time by concurrently solving time allocation and control problems, 
outperforming state-of-the-art methods and human pilots [67], [68]. 

Adaptive Tracking: MPC schemes adjust tracking time on the fly, enhancing accuracy and robustness 
in dynamic scenarios [68]. 

3.1.4.5  Real-Time Trajectory Generation 

Decoupled Planning: Algorithms that plan separate trajectories for each translational degree of freedom 
with decoupled constraints enable feasible trajectory computation within microseconds, allowing high-
rate replanning in dense environments [69]. 

Sparse Computation: Polynomial trajectory generation methods optimize path segments in an 
unconstrained quadratic program, enabling efficient computation and fast trajectory generation [70]. 

3.1.4.6  Graph Search and Trajectory Optimization: 

Global Reasoning: Combining discrete graph search with trajectory optimization provides global 
reasoning capabilities, generating trajectories with provable completeness even in non-convex spaces 
[71]. 

Safe Flight Corridors: Constructing convex overlapping polyhedra allows real-time motion planning 
formulated as a quadratic program [72]. 

3.1.4.7  Waypoint-Based Polynomial Trajectory Generation 

Alternating minimization between boundary conditions and time durations achieves spatial-temporal 
optimality and computational efficiency, suitable for large-scale waypoint-based planning and ensuring 
optimal 3D routes in urban delivery missions [73], [74]. 

3.1.4.8  Deep Learning and Model-Based Optimization 

Quadratic Programming Framework: Integrating deep learning with model-based optimization solves 
trajectory planning as a quadratic programming problem. Neural networks learn time allocations directly, 
enhancing training speed and success rates, effective in real-time applications within cluttered 
environments [75], [76]. 

3.1.4.9  Global Yaw Parameterization 
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Allowing 360-degree yaw variation by including quadratic constraints reduces control effort and 
improves optimization feasibility. This method benefits aerial exploration and target tracking scenarios 
[77]. 

3.1.4.10  Energy-Optimal Trajectory Control 

Developing energy-optimal reference generators and controllers using optimal control theory minimizes 
energy consumption while maintaining low computational costs. Precise electrical models for motors 
and least-squares estimation algorithms for UAV parameters are employed [78]. 

3.1.4.11  Hybrid Path Search Algorithms 

Combining Rapidly-Exploring Random Tree (RRT) with Jump Point Search (JPS) enhances path search 
smoothness and speed. Incorporating time and energy consumption into the cost function ensures 
faster optimization while maintaining trajectory smoothness [79]. 

3.1.4.12  Nonlinear Model Predictive Control (NMPC) 

Utilizing NMPC to optimize velocity and trajectory leads to significant energy savings. Generating 
energy-efficient trajectories and tracking them with NMPC has shown a 36% reduction in energy 
consumption compared to standard controllers like PID and LQR [80]. 

3.1.4.13  Energy Map and Graph-Based Path Planning 

Energy Mapping: Creating an "energy map" that accounts for UAV component energy consumption and 
environmental factors like wind conditions allows for optimal path planning, significantly reducing energy 
usage [81], [82]. 

3.1.4.14  Deep Reinforcement Learning (DRL) 

Employing DRL to optimize UAV trajectories, power allocation, and communication scheduling in UAV-
enabled IoT networks enhances energy efficiency by allowing the UAV to take energy-efficient actions 
within a Markov Decision Process framework [83]. 

3.1.4.15  Fly-Circle-Communicate Trajectory Design 

Clustering IoT devices and using 3D Dubins curves for smooth transitions optimize energy consumption 
and communication time. This method conserves energy by visiting cluster centers and performing 
circular flights, reducing overall communication time and preserving battery life [84]. 

4. Energy Consumption Models 

Given the limited battery capacity and the increasing demand for longer and more efficient flights, 
accurate modeling of energy consumption has become a focal point in quadcopter research and 
development. Various approaches have been developed, each with its own methodologies, 
assumptions, and applications. This section provides a comprehensive overview of the state-of-the-art 
energy consumption models for quadcopters, highlighting their key features, strengths, and limitations. 

4.1 Dynamic and Physics-Based Models 

Dynamic and physics-based models leverage the fundamental principles of motion and energy 
conservation to predict energy consumption accurately. These models consider the quadcopter's 
movement dynamics, thrust forces, and control algorithms. 

[85] introduced a closed-form energy model based on the dynamics of movement and energy 
conservation principles. Their model accurately predicts energy consumption and is adaptable to 
different types of multi-rotors, including gasoline-powered drones, by accounting for motor efficiencies. 
[26] extended this approach by incorporating thrust force correction factors and environmental 
conditions, such as wind, to enhance the model's accuracy during various maneuvers. 

These models are valuable for calculating optimal velocities for different flight paths and providing 
accurate energy estimates during maneuvers like forward flight and turning. They are particularly 
effective when the quadcopter's physical parameters are well-known and can be precisely modeled. 

4.2 Component-Based and Generic Models 

Component-based models decompose the quadcopter into multiple observable components, allowing 
for detailed analysis of energy consumption across different maneuvers and mission types. This 
approach enhances adaptability and ease of integration into various platforms. 
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[86] proposed a generic energy model that breaks down the quadcopter into its constituent components. 
This mission-centric model achieves high accuracy in predicting energy consumption and can be easily 
adapted to new platforms with minimal effort. The model's adaptability makes it suitable for integration 
into autonomous systems, enhancing decision-making processes. 

4.3 Theoretical and Empirical Models 

Theoretical models derived from helicopter literature have been adapted and validated for quadcopters. 
These models provide reliable energy consumption estimates and are often validated through 
experimental flights. 

[87] developed a power consumption model for multi-rotor small, unmanned aircraft systems by 
adapting theoretical concepts from helicopter aerodynamics. Their model was validated with 
experimental data, demonstrating its applicability for flight planning systems. 

Empirical models, on the other hand, rely on real flight data to predict energy consumption. [88] 
employed Gaussian Processes to create an empirical model that offers precise energy consumption 
estimates with minimal data and training time. This model outperformed other data-driven approaches 
like Artificial Neural Networks, highlighting the effectiveness of Gaussian Processes in capturing the 
complex relationships between flight parameters and energy consumption. 

4.4 Data-Driven and Machine Learning Models 

Data-driven approaches utilize machine learning techniques to model energy consumption based on 
flight data. These models are particularly useful when dealing with complex systems where analytical 
modeling is challenging. 

[89] conducted a comparative study on energy consumption models using Long Short-Term Memory 
(LSTM) networks. Their findings indicated that LSTM-based models outperform traditional 
mathematical models in terms of accuracy and flexibility. The adaptability of these models allows them 
to handle various flight conditions effectively. 

4.5 Battery-Aware Models 

Battery characteristics significantly influence quadcopter performance. Battery-aware models 
incorporate the non-linear and non-ideal behaviors of batteries to provide more accurate energy 
consumption estimates. 

[90] emphasized the importance of considering battery non-linearities in energy consumption models. 
Their battery-aware model enhances the accuracy of flight time estimations, which is crucial for 
applications like delivery services and search and rescue missions where precise energy management 
is vital. 

4.6 Power Management and Optimization Strategies 

Advanced power management strategies aim to optimize the energy usage of quadcopters, especially 
those with hybrid power systems combining batteries with alternative energy sources like fuel cells. 

[6] explored hybrid fuel cell-powered drones and proposed power management strategies such as 
frequency separation rule-based approaches and equivalent consumption minimization strategies. 
These strategies significantly reduced hydrogen consumption and extended the drone's endurance, 
demonstrating the potential for cost savings and efficiency improvements in hybrid systems. 

4.7 Trajectory-Based Models 

Trajectory-based models focus on optimizing flight paths to minimize energy consumption, considering 
factors like motor dynamics and aerodynamics. 

[91] developed an energy consumption model that accounts for the dynamics of Brushless DC (BLDC) 
motors and aerodynamic forces. This model aids in designing energy-efficient UAV trajectories, which 
is particularly beneficial for applications such as mobile communication network designs where 
prolonged flight times are essential. 

4.8 Specialized Models for Tethered Systems 

Tethered quadcopter systems present unique energy consumption characteristics due to the physical 
connection to a ground station. 
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[92] analyzed the energy consumption of downward-tethered quadrotors (DTQ). By optimizing 
mechanical power consumption through proper tension adjustment in the tether, they achieved more 
energy-efficient flight. This specialized model highlights the importance of considering system-specific 
factors in energy consumption modeling. 

4.9 Comparative Analyses and Configuration Studies 

Comparative studies help in understanding the impact of different quadcopter configurations on energy 
consumption and performance. 

[93] compared the dynamic models and flight control of plus and cross quadcopter configurations. While 
both configurations consumed similar amounts of energy, the cross configuration demonstrated better 
maneuverability and stability due to the decoupling of pitch and roll control from yaw. Such insights are 
valuable for selecting appropriate configurations based on mission requirements. 

4.10 Environmental Factors and Real-World Validation 

Incorporating environmental conditions and validating models with empirical data are essential for 
ensuring the accuracy and reliability of energy consumption models. 

[26] included environmental factors like wind in their dynamic model to enhance prediction accuracy. 
[94] emphasized the importance of empirical validation, noting that models differ significantly in scope 
and features, which can lead to variations in predicted energy consumption rates. Their assessment 
highlighted the need for standardized validation methods to compare different models effectively. 

5. Comparative Analysis 

Table 1 compares various control strategies and their impact on energy consumption. Many strategies 

focus on optimization techniques, directly minimizing energy use by fine-tuning controller parameters 
or control signals. Adaptive and learning controllers, such as neural networks and learning algorithms, 
adapt control strategies in real-time to improve energy efficiency under changing conditions. 

There are trade-offs between computational complexity, control accuracy, and energy efficiency. More 
accurate models might consume more energy or require additional computational resources. Some 
strategies consider environmental factors like wind, enhancing energy savings by adapting to external 
conditions. 

Implementation challenges include computational demands and the need for precise modeling, which 
can make real-world application difficult despite promising simulation results. 

 
Table 1: Comparison of Control Strategies and Their Impact on Energy Consumption 

Ref. Control Strategy Key Features 
Impact on Energy 

Consumption 
Advantages Limitations 

[27] 
Kinematic Path-

Following 
Controller 

Utilizes flight speed as an 
additional degree of freedom; 
minimizes flight time and path-

following errors by adjusting speed 
based on path curvature 

Reduces energy 
consumption by optimizing 

flight speed and 
minimizing unnecessary 

movements 

Improved energy 
efficiency; better 
path adherence 

Requires 
precise path 

curvature 
modeling 

[28] 

Low- and Medium-
Level Control 

Techniques with 
PD Controller 

Tracks optimal, smooth 
trajectories; PD controller gains 

optimized offline using the Artificial 
Bee Colony algorithm; cost 
function balances tracking 

performance and energy use 

Enhances energy savings 
by optimizing controller 

gains for efficient tracking 

Improved 
tracking 

performance; 
reduced energy 

consumption 

Gains are 
static; may not 

adapt to 
changing 
conditions 

[29] 

Optimal Control 
Problem for 

Angular 
Accelerations 

Calculates angular accelerations 
of motors to ensure energy-
efficient trajectories; solves 
optimal control problem for 

trajectory planning 

Ensures minimal energy 
usage by optimizing motor 

controls 

Direct 
minimization of 

energy 
consumption 

Computational 
complexity; may 
be intensive for 

real-time 
applications 

[30] 

Nonlinear 
Programming for 
Control Variables 

and Trajectory 

Minimizes total flight energy 
consumption; formulates as a 

nonlinear programming problem; 
solved using direct collocation 

Optimizes both control 
inputs and trajectory for 

energy efficiency 

Comprehensive 
energy 

optimization 

Computationally 
intensive; 
requires 

significant 
processing 

power 

[5] 
Optimal Control 

under Windy 
Conditions 

Addresses energy minimization 
under wind influence; finds optimal 

trajectory and control signals 
considering environmental factors 

Significant energy savings 
demonstrated in 

simulations 

Accounts for 
real-world 

environmental 
conditions 

Complex 
implementation; 

may be 
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challenging in 
real-time 

[31] 

Hamiltonian 
Equations and 

Lagrange 
Multipliers 

Uses Hamiltonian mechanics for 
control signal derivation; 

incorporates system constraints 
via Lagrange multipliers 

Highlights flight time as a 
critical factor in energy use 

Accurate 
modeling of 

energy factors 

Complex 
mathematical 
formulation; 

may be difficult 
to solve 

[32] 

ANN-Based Low-
Level Controller 

with Energy 
Prediction 

Combines energy prediction, 
optimal path planning, and 

adaptive neural network control for 
disturbance rejection 

Improves energy efficiency 
through adaptive learning 

and control 

Online learning; 
adaptable to 

varying 
parameters 

Complexity in 
ANN training 

and 
implementation 

[33] 

Deep Neural 
Network 

Approximation of 
MPC 

Approximates Model Predictive 
Control using DNN; trained via 
supervised learning; reduces 

computational load 

Saves energy by 
enhancing computational 
efficiency, extending flight 

time 

Suitable for real-
time 

applications; 
efficient 

computation 

Requires 
extensive 

training data; 
potential 

generalization 
issues 

[34] 

Trajectory Design 
and Controller 

Gain Tuning via 
Metaheuristic 

Algorithm 

Uses evolutionary algorithms (e.g., 
cuckoo search) to optimize 

controller gains; cost function 
includes tracking error and power 

consumption 

Minimizes energy use and 
tracking error through 

optimized gains 

Applicable to 
various 

controllers; 
enhances 

energy efficiency 

Offline 
optimization; 

lacks real-time 
adaptability 

[35] 

Double-Loop 
Nonlinear Optimal 

Backstepping 
Controller 

Inner loop for attitude, outer loop 
for position; parameters optimized 

using a multi-objective genetic 
algorithm 

Reduces energy 
consumption while 

improving path tracking 
accuracy 

Optimized 
control 

parameters; 
enhanced 

performance 

Complex 
implementation; 

offline 
optimization 

required 

[36] 

Cascaded, 
Bounded Control 
System Based on 
Energy-Efficient 

Angles 

Controls roll and pitch within 
energy-efficient ranges identified 

experimentally; reduces 
aggressive maneuvers 

Increases energy 
efficiency by limiting high-
consumption orientations 

Simple 
implementation; 

direct energy 
consumption 

control 

May reduce 
agility; depends 

on accurate 
experimental 

data 

[37] 
Adaptive Search 
Algorithm with 

Neural Network 

Neural network assists in optimal 
control of electric drive and flight; 

trained using adaptive search 
algorithm data 

Minimizes power 
consumption by optimizing 

control signals 

Accelerates 
search for 

optimal controls; 
adaptive 

Requires 
training; 

complexity in 
implementation 

[38] 

Brain Emotional 
Learning Based 

Intelligent 
Controller 
(BELBIC) 

Neurobiologically inspired 
controller; gains optimized using 
particle swarm optimization and 

cuttlefish algorithm 

Provides energy-tuned 
trajectory tracking 

Mimics cognitive 
functions; 

optimized for 
energy efficiency 

Complex design 
and 

optimization 
process 

[39] 

Replacement with 
Efficient 

Algorithms 
(YOLOV3 and 

ADRC) 

Replaces heavy algorithms with 
lightweight YOLOV3 for detection 

and ADRC for control 

Enhances energy 
management by reducing 

computational load 

Lower energy 
consumption; 

efficient 
processing 

Potential trade-
offs in 

performance 
quality 

[40] 

Incremental 
Control Allocation 

in Nonlinear 
Dynamic Inversion 

Controller 

Minimizes energy increments via 
quadratic programming; follows 
predefined trajectories efficiently 

Achieves energy-efficient 
control with accurate 

trajectory tracking 

Similar accuracy 
with reduced 
energy use 

Requires 
solving 

optimization 
problems in 

real-time 

[41] 

Comparison of 
Linear and 

Nonlinear Model 
Predictive Control 

(MPC) 

Linear MPC uses simplified 
models; Nonlinear MPC uses 

detailed models; evaluates trade-
offs between accuracy and energy 

use 

Linear MPC consumes 
less energy; Nonlinear 

MPC offers better 
accuracy but higher 

energy use 

Insights into 
balancing 

energy use and 
control precision 

Nonlinear MPC 
is 

computationally 
heavy; linear 

MPC less 
accurate 

[42] 

Flight Path and 
Speed Control 
with PID and 

Reinforcement 
Learning 

Combines path planning with 
speed control; uses PID with depth 

images or deep RL for collision 
avoidance 

Reduces flight time and 
energy consumption 

Shorter flights; 
improved energy 

efficiency 

Implementation 
complexity; 

requires 
imaging or RL 

training 

6. Emerging Trends and Future Directions 

The pursuit of energy optimization in quadcopter UAVs is propelling advancements in technology and 
methodology. This section explores emerging trends and future directions, providing specific examples, 
addressing common challenges, and assessing the practicality of these innovations. 

6.1 Development of Practical and Scalable Methods 

6.1.1 Lightweight Algorithms and Onboard Processing 

To transition from theoretical research to practical applications, there's a need for algorithms that are 
both effective and suitable for the limited computational resources of UAVs. Researchers are developing 
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simplified versions of existing algorithms and new lightweight methods that reduce computational load 
without compromising performance. 

Example: 

• Simplified Model Predictive Control (MPC): By reducing the complexity of MPC algorithms, 
UAVs can perform real-time trajectory optimization with less processing power, as demonstrated 
in recent studies where simplified MPC was successfully implemented on quadcopters with 
limited hardware capabilities. 

Current Readiness: 

• Experimental Stage: These methods are being tested in controlled environments and have 
shown promise in small-scale deployments. 

Challenges: 

• Computational Constraints: Even simplified algorithms must balance performance with the 
processing limitations of onboard systems. 

6.2 Enhancing Adaptability with Advanced Technologies 

6.2.1 Integration of Advanced Sensors 

Advanced sensors like LiDAR, high-precision IMUs, and environmental sensors enhance a UAV's ability 
to perceive its environment, leading to more efficient energy use through better navigation and obstacle 
avoidance. 

Example: 

• LiDAR-Assisted Navigation: UAVs equipped with LiDAR can create detailed 3D maps of their 
surroundings, allowing for precise path planning that avoids obstacles and reduces unnecessary 
movements, thereby conserving energy. 

Current Readiness: 

• Commercial Availability: These sensors are increasingly available and are being integrated into 
UAV systems, though cost and weight remain considerations. 

6.2.2 Machine Learning and Reinforcement Learning 

Machine learning, especially deep reinforcement learning (DRL), enables UAVs to learn optimal 
strategies for energy management through interaction with their environment. 

Example: 

• Adaptive Control Policies: A study demonstrated that UAVs using DRL could adjust their flight 
paths in real-time to account for wind patterns, resulting in up to 20% energy savings compared 
to static path planning. 

Current Readiness: 

• Emerging Technology: While promising, DRL applications are mostly in research stages due to 
high computational demands and the need for extensive training data. 

Challenges and Solutions: 

• Computational Demands: Utilizing onboard GPUs or specialized hardware accelerators can 
help meet processing requirements. 

• Data Requirements: Simulated environments can generate training data, though the simulation-
to-reality gap must be addressed to ensure real-world effectiveness. 

6.3 Broadening Optimization Approaches 

6.3.1 Exploration of Diverse Algorithms 

Beyond traditional methods, algorithms inspired by natural processes offer potential improvements in 
energy optimization. 

Examples: 

• Genetic Algorithms (GA): GA have been used to optimize flight paths by evolving solutions over 
generations, finding efficient routes that reduce energy consumption. 

• Ant Colony Optimization (ACO): ACO algorithms mimic the behavior of ants to discover optimal 
paths, adaptable to dynamic environments where conditions change rapidly. 
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Current Readiness: 

• Research Phase: These algorithms are primarily explored in academic settings, with some initial 
implementations in prototype systems. 

Challenges: 

• Scalability: Ensuring these algorithms can operate efficiently on UAV hardware is an ongoing 
challenge. 

6.4 Consolidated Challenges Across Trends 

6.4.1 Computational Demands and Data Requirements 

A common challenge across emerging technologies is the need for significant computational resources 
and large datasets for training algorithms. 

Strategies to Address These Challenges: 

• Algorithm Optimization: Developing more efficient code and leveraging approximate computing 
techniques can reduce computational loads. 

• Federated Learning: This approach allows multiple UAVs to collaboratively learn from shared 
experiences without centralized data collection, mitigating data scarcity and privacy concerns. 

6.4.2 Cybersecurity Risks and Ethical Considerations 

As UAVs become more autonomous and connected, they face increased cybersecurity threats and 
raise ethical questions. 

Examples and Incidents: 

• Cybersecurity Breaches: Instances of UAVs being hijacked through unsecured communication 
links highlight the need for robust encryption and authentication protocols. 

• Ethical Concerns: The use of UAVs in surveillance has sparked debates on privacy rights, 
emphasizing the importance of establishing ethical guidelines. 

Solutions: 

• Security Protocols: Implementing strong encryption and regularly updating security measures 
can protect against cyber threats. 

• Ethical Frameworks: Developing and adhering to ethical standards ensures responsible use of 
UAV technology. 

6.5 Integrating Environmental and Regulatory Considerations 

6.5.1 Compliance with Regulations 

Incorporating regulatory requirements into energy optimization models ensures UAV operations are 
legal and socially acceptable. 

Example: 

• Regulation-Aware Path Planning: Algorithms that factor in no-fly zones and altitude restrictions 
can optimize routes that are both energy-efficient and compliant with aviation laws. 

Current Readiness: 

• Implementation in Progress: Some commercial UAV systems already include basic regulatory 
compliance features, with ongoing research to enhance these capabilities. 

6.5.2 Environmental Sustainability 

Optimizing energy consumption aligns with environmental goals by reducing the carbon footprint and 
minimizing noise pollution. 

Example: 

• Electric Propulsion Systems: Transitioning to electric motors powered by renewable energy 
sources reduces emissions associated with UAV operations. 

6.6 Assessing Practical Feasibility 

While the technologies and methods discussed offer significant potential, their practical implementation 
varies: 
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• Mature Technologies: Advanced sensors and basic machine learning algorithms are already 
integrated into some UAVs. 

• Emerging Technologies: DRL and bio-inspired optimization algorithms are in experimental 
stages, requiring further development before widespread adoption. 

• Challenges Ahead: Technical feasibility, cost, and regulatory hurdles must be addressed to 
realize these advancements fully. 

6.7 Impact on the UAV Industry and Society 

Adopting these emerging trends will: 

• Enhance Efficiency: Leading to longer flight times and more reliable operations. 

• Promote Sustainability: Contributing to environmental conservation efforts. 

• Improve Services: Enabling better performance in applications like disaster response, 
agriculture, and logistics. 

• Drive Innovation: Stimulating technological progress and economic growth in the UAV sector. 

7. Conclusion 

Energy optimization in quadcopter UAVs is critical due to the increasing demand for efficient, longer-
duration flights across applications such as surveillance, communication, delivery, and environmental 
monitoring. This review examined advanced strategies to reduce energy consumption in quadcopters, 
highlighting the interplay between trajectory planning, control systems, environmental adaptation, and 
optimization algorithms. 

Optimal trajectory planning is central to minimizing energy usage. By transforming trajectory planning 
into optimal control problems, researchers have developed methods to determine energy-efficient flight 
paths. Implementations like kinodynamic path searching with B-splines and the incorporation of 
environmental factors such as wind have demonstrated significant energy savings and extended flight 
durations in practical applications. 

Advanced control systems enhance energy efficiency by effectively executing optimized trajectories. 
Strategies such as Model Predictive Control (MPC) optimize flight parameters in real-time, while 
reinforcement learning approaches enable dynamic adaptation to changing environments. However, 
challenges like computational complexity and the need for extensive training data limit their widespread 
adoption. 

Environmental adaptation is critical for optimizing energy consumption. Incorporating environmental 
data into flight planning—such as leveraging wind conditions through energy-distance maps and 
customized algorithms—has resulted in substantial energy savings, particularly in urban environments 
where wind patterns can be exploited. 

Optimization algorithms have significantly advanced energy optimization efforts. Beyond Particle 
Swarm Optimization (PSO), algorithms like Genetic Algorithms (GA), Ant Colony Optimization (ACO), 
and hybrid metaheuristic methods contribute to optimizing flight paths and control parameters, 
improving convergence speed and solution quality. 

Despite these advancements, implementation challenges persist. Computational demands, real-time 
processing requirements, and reliance on simulations limit practical deployment. Many strategies 
assume simplified models and face obstacles such as the need for robust data and limited onboard 
computational resources. 

To address these challenges, future research should focus on: 

• Developing practical, scalable methods suitable for real-world conditions, including lightweight 
algorithms compatible with UAVs' onboard systems. 

• Enhancing adaptability by integrating advanced technologies like environmental sensors for 
real-time data acquisition and employing machine learning for dynamic adaptation. 

• Broadening optimization approaches through exploration of diverse algorithms and fostering 
interdisciplinary collaboration among experts in control theory, machine learning, and 
aeronautics. 
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• Addressing implementation challenges by creating efficient computational methods and robust 
training techniques to overcome data and processing constraints. 

• Integrating environmental and regulatory considerations into optimization models to ensure 
compliance, sustainability, and a balance between energy efficiency and operational 
requirements. 

By pursuing these directions, the UAV industry can achieve more efficient, adaptable, and practical 
energy optimization strategies. These advancements will not only enhance the operational capabilities 
of quadcopters but also contribute to broader societal benefits such as improved service delivery, 
environmental conservation, and resource efficiency. Embracing these innovations will transform UAV 
applications across various sectors, fostering sustainable growth and addressing the evolving needs of 
modern society. 
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