
FILTER-ERROR METHOD FOR ESTIMATION OF AERODYNAMIC
PARAMETERS OF A SUBSCALE GENERIC FUTURE FIGHTER

Leonardo Murilo Nepomuceno1, Clécio Fischer1, Alain Giacobini de Souza1,2 & Roberto Gil Annes
da Silva1

1Aeronautics Institute of Technology, São José dos Campos - SP. Brazil
2IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon. Portugal

Abstract

The subscale flight testing method is a reduced-size aircraft, that reproduces free flight like a manned or
full-scale aircraft. The Generic Future Fighter (GFF) is a subscale fighter airplane with a 14% scale. With
the data collected in flight a system identification was done. Filter-Error Method was applied in this process.
Results were also compared to Output-Error Method. Filter-Error Method considers both process noise and
measurement noise. It is a stochastic approach and has proven to be adequate for parameter estimation in
flight, under turbulent atmosphere. The main objective of this work is to demonstrate that FEM applied to
subscale aircraft increases the accuracy of the estimated model, since these aircraft may be more susceptible
to turbulence then full-scale aircrafts.

Keywords: Filter-Error method, Subscale, System Identification, Turbulence, Unmanned Aerial Vehicle

1. Introduction
The aerodynamic and structural optimization of fighter aircraft has pushed these airplanes to the limit.
In order to achieve a greater advance in performance and control, innovative configurations must be
developed [1]. One way to evaluate an unconventional aircraft, reducing risks and costs, is to test
a model on a reduced scale [2]. The subscale flight testing method is a reduced-size aircraft and
reproduces free flight (6 degree of freedom) like a manned or full-scale aircraft.
The most used technique for analysing flight dynamics is the construction of a simulation model [3].
To increase the accuracy of this model, data collected in flight is used in a system identification
process to estimate the aerodynamic parameters.
An example of aerodynamic modelling, system identification and flight simulation of a subscale air-
craft is the Airborne Subscale Transport Aircraft Research (AirSTAR). This aircraft model is part of
a NASA effort to reduce the number of fatal accidents involving large transport aircraft. AirStar is a
dynamically scaled aircraft that allows the use of flight test results from subscale aircraft to full-scale
aircraft [8].
Flight test data of a subscale fighter aircraft will be presented in this work and a system identification
process is applied to these data. The identification programs presented here were based on the
algorithms proposed by Ravindra, a senior scientist at the German Aerospace Centre (DLR). Data
analysis indicates that noise is present due to air turbulence and makes modelling the aircraft difficult
[4]. Needing the application of methods to estimate the turbulence, which is a process noise.
The Output-Error Method (OEM) has historically proven adequate for identifying flight vehicles. How-
ever, in this work, the OEM, which is not able to estimate the noise caused by air turbulence, will be
compared with the Filter-Error Method (FEM). The main objective of this work is to demonstrate that
FEM applied to subscale aircraft increases the accuracy of the estimated model, since these aircraft
may be more susceptible to turbulence then full-scale aircrafts.
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2. Generic Future Fighter Subscale
In 2006 Saab Aeronautics, the Swedish Defence Research Agency (FOI), Volvo Aero, Linköping
University and the Royal Institute of Technology (KTH) decided to develop a concept of a future
fighter, the Generic Future Fighter GFF. The subscale model was built at Linköping University under
the Future Aircraft Design and Demonstration (FADEMO) project. The subscale GFF has a wingspan
of 1.47m, while the concept full-scale aircraft has a wingspan of 10.5 m.
The Generic Future Fighter (GFF) is a subscale platform, i.e. a 14% scaled model, Figure 1. A co-
operation signed between the University of Linköping - Sweden - and Aeronautics Institute of Tech-
nology (ITA) -Brazil- allows the sharing of GFF flight test information. While the Swedish university
is responsible for operating and developing test procedures and acquiring flight test data, ITA is re-
sponsible for implementing the system identification process with the acquired data. ITA already has
experience with system identification in previous years [5].

Figure 1 – GFF subscale during flight tests at Sweden (Courtesy of Linköping University).

3. System Identification
Identification is an ensemble with experimental process and numerical analysis with the propose to
obtain non-modeled, or uncertain parameters. The system identification process can be divided into
5 topics, maneuver, measurements, method, model and validation. Maneuver consist of applying
a specific command to the aircraft’s control inputs to excite a dynamic mode. The measurements
are the variables acquired during the flight. The method is the mathematical or statistical tool to be
used, such as the Output-Error Method and Filter-Error Method. The model are the mathematical
equations that describe the aircraft’s movement. Validation are the statistical tools that check the
model’s precision [7].
The FEM process, figure 2 a), is compared to the OEM in the figure 2 b). Where, z is the data
measured during the flight and ỹ is the output vector of the system based on state estimator, the
Extended Kalman filter (EKF). The OEM apply the integration of state equations to obtain the output
vector, y, of the model.
Sobron (2021) states that the Filter-Error Method is the most appropriate algorithm for identifying
aircraft models with the presence of atmospheric turbulence. The OEM is a simplified version of the
Filter Error Method and is best suited for flight tests without atmospheric turbulence. The presence
of turbulence is modeled as a process noise in the Filter-Error Method. For the OEM, turbulence can
result in inaccurate estimates of model parameters and convergence problems [4].

3.1 Output-Error Method Theory
The OEM is an identification process that only considers measurement noise, which is a special case
of the Filter-Error Method [4]. OEM seeks to adjust the parameters of a model in an iterative way,
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Figure 2 – a) Filter-Error Method. b) Output-Error Method Process [4].

making use of the minimization of the error between the measured variables and the output model.
The optimal solution to this problem is made by minimizing the cost function:

J(Θ) = det(R) (1)

This equation above is a simplification of the maximum likelihood equation. Where R is the noise
covariance matrix:

R =
1
N

N

∑
k=1

[z(tk)− y(tk)][z(tk)− y(tk)]T (2)

3.1.1 Model
The nonlinear mathematical model is given by:

ẋ(t) = f [x(t), u(t), β ], x(t0) = x0 (3)
y(t) = g[x(t),u(t),β ] (4)

z(tk) = y(tk)+G v(tk) (5)

Where f and g are nonlinear system functions, x is the state vector (nx × 1), u is the input vector
(nu × 1) and y is the observation vector (or model output). β is the system parameters vector to be
identified. The vector of measures z is sampled at N discrete points. The measurement errors (noise)
are described by v(tk) = z(tk)− y(tk). The matrix G represent the measurement noise distribution
matrices. Noise is supposed to be just summed and G is considered time-invariant.
The parameters to be estimated is shown below:

Θ = [CD0,CDV ,CDα ,CL0,CLV ,CLα ,Cm0,CmV ,Cmα ,Cmq,Cmδe] (6)

where Θ = [β ]. The coefficient CD0 is the drag coefficient for zero angle of attack, CDV is the variation
of drag coefficient with velocity, CDα is the variation of drag coefficient with angle of attack, CL0 is the
lift coefficient for zero angle of attack, CL0 is the variation of lift coefficient with angle of attack, Cm0
is the pitching moment coefficient for zero angle of attack, CmV is the variation of pitching moment
coefficient with velocity, Cmα is the variation of pitching moment coefficient with angle of attack, Cmq is
the variation of pitching moment coefficient with pitch rate and Cmδe is the variation of pitching moment
coefficient with elevator deflection angle.
In this model, the longitudinal aerodynamic parameters of the GFF subscale were estimated. The
equations of state, of longitudinal motion, are described below:

V̇TAS =− q̄S
m

CD +g sin(α −θ)+
Fe

m
cos(α +σT ) (7)
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α̇ =− q̄S
mV

CL +q+
q
V

cos(α −θ)− Fe

mV
sin(α +σT ) (8)

θ̇ = q (9)

q̇ =
q̄Sc̄
IYY

Cm +
Fe

IYY
(ltxsin(σT)+ ltzcos(σT)) (10)

where V̇TAS is the true air speed, q̄ is the dynamic pressure, S is the reference area, m is the mass,
CD is the drag coefficient, g is the gravity, α is the angle of attack, θ is the pitch angle, Fe is the thrust
force, σT is the angle between thrust direction and longitudinal reference axis of the airplane, V is the
speed, CL is the lift coefficient, q is the pitch rate, c̄ is the mean aerodynamic chord, Cm is the pitching
moment, IYY is the moment of inertia and ltx ltz is the location of engines from the center of gravity.
The lift, drag and pitching moment coefficients are described as follows:

CD =CD0 +CDV
V
V0

+CDαα (11)

CL =CL0 +CLV
V
V0

+CLαα (12)

Cm =Cm0 +CmV
V
V0

+Cmαα +Cmq
qc̄
2V0

+Cmδ eδ e (13)

where V0 is the reference speed, for a steady-state condition. The equations 11, 12 and 13 present
the aerodynamic parameters to be identified, according to the vector of parameters 6.

3.1.2 Optimization Method
To determine the minimum of the cost function, the Taylor series expansion is applied to the cost
function until the second term and then equal to zero:

(
∂J
∂Θ

)
i+1

≈
(

∂J
∂Θ

)
i
+

(
∂ 2J
∂Θ2

)
i
∆Θ (14)

(
∂J
∂Θ

)
i
+

(
∂ 2J
∂Θ2

)
i
∆Θ = 0 (15)

Isolating ∆Θ :

∆Θ =−
[(

∂ 2J
∂Θ2

)
i

]−1(
∂J
∂Θ

)
i

(16)

At each iteration the parameter values are updated as follows:

Θi+1 = Θi +∆Θ (17)

The partial derivative of the cost function is defined as:

∂J
∂Θ

=−
N

∑
k=1

[
∂y(tk)

∂Θ

T
]

R−1 [z(tk)− y(tk)] (18)

The second partial derivatives, considering the Gauss-Newton method, it is equal to:

∂ 2J
∂Θ2 ≈−

N

∑
k=1

[
∂y(tk)

∂Θ

T
]

R−1 ∂y(tk)
∂Θ

(19)
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3.2 Filter-Error Method Theory
The application of the Output-Error Method is limited to flight tests without atmospheric turbulence.
The presence of turbulence, process noise, makes it difficult to estimate parameters and the Output-
Error Method presents imprecise estimates and convergence problems.

3.2.1 Model
The state space mathematical model is given by the stochastic equations:

ẋ(t) = f [x(t), u(t), β ]+Fw(t), x(t0) = x0 (20)
y(t) = g[x(t),u(t),β ] (21)

z(tk) = y(tk)+G v(tk) (22)

where f and g are vector functions of dimensions nx and ny, x is the state vector (nx × 1), u is the
input vector (nu × 1) and y is the observation vector (or model output). β is the system parameters
vector to be identified . The vector of measures z is sampled at N discrete points. Process noise w(t)
and measurement noise v(tk) are uncorrelated and are mutually independent. The matrices F and
G represent the measurement and process noise distribution matrices. Noise is supposed to be just
summed and the noise distribution matrices F and G are considered time-invariant and independent
of each other.

3.2.2 FEM algorithm
The estimates of the parameter vector Θ and the matrix R are obtained by minimizing the likelihood
function:

J(Θ) = det(R) (23)

Where ỹ is the output of the model based on the predicted states. The variable z is the vector of
the measured data with N discretized time samples. Where R is the steady-state covariance matrix
described by:

R =
1
N

N

∑
k=1

[z(tk)− ỹ(tk)][z(tk)− ỹ(tk)]T (24)

A summary of the Filter-Error-Method calculation steps for non-linear systems is presented below.
Initially the equations of states are integrated using the 4th order Runge-Kutta method. Then, the
observation variables are calculated according to the equation:

ỹ = g [x̃(tk),u(tk),β ]+by (25)

Where by is the output bias. Then the residuals [z(tk)− ỹ(tk)] and the maximum likelihood estimate of
R are computed.
The next step is to solve the steady-state Riccati equation for P. The first-order approximation of the
steady-state Riccati equation is equal to:

AP+PAT − 1
∆t

PCT R−1CP+FFT = 0 (26)

Where A and C are the linearized state space matrices. F is the process noise distribution matrix and
P is the covariance matrix of the state-prediction error.
With the value o P is possible to compute the gain matrix:

K = PCT R−1 (27)
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Thus, with the calculated Kalman gain matrix K, the states are corrected as follows:

x̂(tk) = x̃(tk)+K[z(tk)− ỹ(tk)] (28)

The response gradients from perturbed system equations are numerically approximated:

(
∂ ỹ
∂Θ

)
i j
≈

ỹi(Θ+δΘ je j)− ỹi(Θ)

δΘ j
(29)

Then the calculation of updated parameters ∆Θ applying Gauss-Newton method is performed. Where
the update of parameters is defined as:

Θi+1 = Θi +∆Θ (30)
F ∆Θ =−G (31)

Finally, it is iterated until convergence. The optimization method to determine the minimum cost
function is the same method used in OEM.

4. Results
The Figure 3 presents time histories of seven output variables, true airspeed, angle of attack, pitch
angle, pitch rate, the derivative of the pitch rate, acceleration in the x-axis and acceleration in the z-
axis. The last graph shows the elevator input. The true airspeed and angle of attack are two variables
related to air flow, that are likely to suffer more interference from turbulence. In this figure, the Output-
Error Method was used for model estimation, where the red line represents the estimated model and
the blue line represents the data measured in flight.
The same flight phase of the GFF is also presented in the Figure 4. However, the red curve presents
the model estimated with the Filter-Error Method, where turbulence is considered in the prediction of
the parameters. Comparing the two figures, it can be seen that the result of the Filter-Error Method
was closer to the data collected in flight. To quantify this comparison we can analyze the cost function
of each method. The cost function, det(R), of the OEM was equal to 4.4602e-07, after convergence of
the algorithm. And the cost function, det(R), of the FEM was equal to 8.5254e-18, after convergence.
A table with the results is presented below:

Table 1 – FEM and OEM Results

5. Conclusion
The subscale method for fighter design can add information and model the aircraft in some regions of
the flight envelope. It is an important tool for analysing and developing aircraft with non-conventional
configurations. Considering the results presented, to ensure a good accuracy of the model, the use
of the Filter-Error Method proved to be more suitable for subscale fighter applications. These results
are part of an ongoing research, where other maneuvers will be identified and used to validate the
model.
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Figure 3 – Output-Error Method Results

7



FEM FOR ESTIMATION OF AERODYNAMIC PARAMETERS OF A SUBSCALE GENERIC FUTURE FIGHTER

0 2 4 6 8 10 12

40

45

50

V
 (

m
/s

)

Time histories of output variables (measured and estimated); input variables

0 2 4 6 8 10 12

0

5

10

 (
°)

0 2 4 6 8 10 12
-20

0

20

 (
°)

0 2 4 6 8 10 12
-20

0

20

40

60

q
 (

°/
s
)

0 2 4 6 8 10 12

-200

0

200

400

q
p
 (

°/
s
2
)

0 2 4 6 8 10 12

0

2

4

a
x
 (

m
/s

2
)

0 2 4 6 8 10 12

-40

-20

0

a
z
 (

m
/s

2
)

0 2 4 6 8 10 12

Time in sec

-5

0

5

e
 (

°)

Figure 4 – Filter-Error Method Results
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