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Abstract 

The paper presents a research on biofeedback analysis in the context of UAV operators and development of 

the adaptive system for operators, so their performance is maximum. In the first, theoretical part, methods of 

measuring human psycho-physical state are considered. For each measurement method, a review of com-

mercially available measurement equipment - especially in terms of data availability - has been performed. 

Taking into account the most useful and affordable devices, concepts of measurement station was developed. 

On the basis of these concepts an actual stand was built. It enables measurements of specific biofeedback 

parameters i.e. bioelectrical activity of brain, heart rate and skin conductivity. The research part concerns the 

measurement of selected parameters, their analysis and further use of the obtained results. Following research 

focuses on the integration of the results of individual data in order to determine the operator’s stress/strain 

level . Base on those data  an engagement index (EI) will be determined so that it can be used in further 

research as input to the adaptive system. Having the engagement index calculated during the tasks the further, 

more advanced research is delivered. The development of an adaptive system capable of adjusting the level 

of task difficulty accordingly to the estimation of functional state of the human operator. Depending on the 

circumstances both, mental underload and overload, can lead to decreased performance. Performance dec-

rements resulting from the state of mental underload can be associated with loss of situational awareness, 

insufficient attentional resources and deskilling. The role of the designed system is to assist the operator to 

maintain optimum engagement, increase his ability to cope with the tasks and as a result maximize his perfor-

mance. Adaptive automation invocation processes are based on real-time operator performance and physio-

logical assessment, along with subjective self-reported workload provided by the operator himself by filling 

NASA TLX questionnaire. Considering individual differences and ambiguous assessment of the operator’s 

mental state human behavior is difficult to define with typical logic approach. Therefore, the assessment of 

human workload is done using fuzzy modeling approach taking performance index, engagement index (based 

on physiological measurements as described in the first part) and NASA TLX score as input parameters. The 

effectiveness of the developed adaptive automation system was verified in real-time by conducting human-in-

the-loop experiments during which the operators were performing the MATB-II tasks. 

Keywords: human operator, UAV training, biofeedback, workload assessment, adaptive automation 

1. Introduction 

Several experiments have demonstrated that there is an inverted U-shape relationship between 

workload and performance. As presented in the figure below, the operator’s ability to cope with task 

demands is maximized when he experiences moderate levels of workload. Several studies have 

indicated that both extreme conditions, mental overload and underload, negatively affect task per-

formance as well as the operator’s welfare, and need to be mitigated [1].  Excessive mental workload 
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can lead to stress, frustration, confusion, fatigue and delayed information processing. Excessive lev-

els of acute stress have detrimental effect on cognitive processes such as attention, working 

memory, memory retrieval and decision making. Highly demanding tasks, time pressure and stress-

ful circumstances make human operator prone to committing errors [1]. On the other hand, at a low 

level of mental workload human operator can experience boredom, annoyance and mind wandering 

that leads to vigilance decrements [2].  

 

 
Figure 1– Pressure/efficiency curve. 

The switch from active processing to passive monitoring might be a result of implementing higher 

levels of automation that in general are expected to improve the efficiency and capacity of the system 

but on the other hand introduce some difficulties for human operators. One of the major conse-

quences of automation is out-of-the-loop performance problem when as a result of allocation of sys-

tem functions to an automated controller, the operator is removed from a control loop. It decreases 

their ability to observe system parameter changes and take over manual operations in case of auto-

mation failure. The operator has reduced situation awareness and cannot monitor the system effi-

ciently. It is associated with decreased alertness, complacency – human over-trust in computer con-

trollers, increased reaction times and manual control skills decay. These consequences can impact 

human performance under normal operating conditions and in case of system failure [3].  

2. Biofeedback loop implementation for adaptive systems 

Physiological variations reflect fluctuations in operator’s functional state and can be used to evaluate 

the mental workload experienced while executing a task. Going further, results of real-time analysis 

of biofeedback measurements can provide an adaptive control input to biocybernetic systems, ca-

pable of dynamically adjusting their mode of operation to the human mental state [4].  

Adaptive automation systems have proved effective in mitigating decreased performance caused by 

either under- or overload. These systems are able to dynamically implement automated aids in re-

sponse to situational changes e.g. operator’s workload [5].  

Changes in mode of operation of adaptive system can be initiated based on e.g. the operators per-

formance, physiological assessment or subjective workload rating. In this study, these three 

measures are integrated in order to evaluate operator’s mental workload and trigger changes in 

adaptive automation if necessary. 

Possible types of system adaptation include changes in functions allocation, task scheduling and 

levels of difficulty. Additionally, some systems can adjust the GUI layout, enhance the guidance of 

attention by providing visual or vocal cues and features or modify the amount of information that is 

presented to the operator. In this study the adaptive system adjust its mode of operation to the op-

erator’s functional state by changing the level of task difficulty.  

It has been demonstrated that adaptive automation is superior to static automation as it preserves 
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the operator’s skill level, ensures that the operator’s workload is maintained within the optimum 

range, guarantees continuous task involvement and improved situation awareness, and as a result 

improves the operator’s performance. It also leads to improved management of automation failures 

and degraded conditions, including detection of the failure and management of recovery, since the 

skills needed to performed the task are maintained [6].   

3. Methods of measuring psychophysical parameters 
When analyzing different types of measurement methods, the following were decided upon due to the 
usefulness of the measurement data, accuracy, ease of use, price, among others. 

Table 1 

Measuring method Pros Cons 

EEG 
data usability, accuracy, non-inva-

siveness, does not restrict  
mobility 

price, general data (unable to 
distinguish between emotions, 

e.g. fear – excitement) 

HR price, data usability, easy analysis 

unable to distinguish between 
emotions, does not need to re-
spond with increased psycho-

logical stress 

GSR 
price, ease of implementation, data 

usability 
accuracy 

 
On the basis of [7], a table was created in which the relationship between the results of measurements 
measured by different methods and the load of the tested person is presented. 

Table 2 

3.1 Electroencephalography (EEG) 
Electroencephalography is the measurement of the bioelectrical activity of the brain [8][9]. EEG 
measures the electrical potentials produced by the cells and dendrites of pyramidal neurons. The 
signals are measured in the μV range (0.5 to 100 μV) at low frequency (0.5 to about 40 Hz). They are 
usually referred to as rhythms and are classified into five frequency bands (Table 3). 

       Table 3 

No. Brain waves Frequency [Hz] 
1 Delta (δ) 0,5 – 4 
2 Theta (θ) 4 – 8 
3 Alpha (α) 8 – 13 
4 Beta (β) 13 – 30 
5 Gamma (γ) 36 – 44 

 
On the basis of observation and various studies, it has been established which waves dominate in      
certain human mental states. They can be defined as follows: 

• alpha waves are dominant during the relaxed state,  

• beta waves occur during the state of readiness; they are divided into low, middle and beta 2 waves. 

Low beta dominates in the process of recalling information, it accompanies learning processes. 

Measuring method Lack of involvement Excessive involvement 

EEG 
increase in α wave activity, decrease 

in β and θ wave activity 
increase in α wave activity 

HR HR decrease HR increase 

GSR decrease in skin conductance values 
increase in skin conductance 

values 
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Middle waves occur during rapid brain work. The least desired are beta 2 waves, which appear 

during excessive excitement, nervousness.  

• gamma waves are responsible for the process of intensive thinking, 

• delta waves occur mainly during deep sleep, 

• theta waves dominate during meditation, hypnosis; during their occurrence stress is reduced and 

creativity is increased.  

  To determine the engagement index for an EEG study, the relationship [10] can be used:  

𝐸 =
𝛽

(𝛼+𝜃)
 (1) 

The index was established taking into account that an increase in beta waves is associated with an     
increase in brain activity during mental effort, while an increase in alpha and theta waves is associated 
with reduced mental performance and alertness. 

3.2 Heart rate (HR) 
Heart rate (HR) can be defined as the number of heartbeats per unit time. This value is usually given 
as beats per minute (BPM). As stress increases, a person's HR increases.  The normal pulse rate is 
between 60 and 100 BPM [11] and depends on many factors, including age, health, physical activity, 
therefore the limit above which the stress level increases is determined individually. To determine the 
limit above which the pulse value indicates cognitive load of the examined person, the following rule 
has been adopted: 10% of the average pulse value is added to the resting pulse value, e.g. in the 
case of resting pulse of 70 BPM, values above 77 BPM may indicate stress of the examined person. 
Such a rule was established taking into consideration the nature of the test - lack of physical activity, 
therefore heart rate changes are not so big and dynamic. The longer the pulse stays above the limit, 
the more demanding the task is. The final coefficient can be defined as: 

𝐸𝐻𝑅 = 1 −
𝑠𝑡𝑟𝑒𝑠𝑠_𝑝𝑜𝑖𝑛𝑡𝑠_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝑎𝑙𝑙_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
 (2) 

3.3 Galvanic Skin Response (GSR) 
The galvanic skin response is measured by recording the electrical resistance of the skin [12][13]. 
This resistance depends on skin hydration, which changes during secretion of sweat by human sweat 
glands. In this situation, sweat becomes a good conductor between the skin and blood vessels. The 
conductivity increases with increasing humidity. Sweat production increases under human load, phys-
ical work and thus the value of human body resistance decreases. An increase in the GSR level 
corresponds with an increase in the load of the subject. The main advantages of GSR measurement 
are its simplicity - two electrodes placed e.g. on the toes of the tested person are enough for meas-
urement, non-invasiveness and easiness of results analysis.  

4. Measurement Equipment 
The following table summarizes the equipment for each measurement method used in the study. 
 
 

Figure 2 – From the left: Neurosky Mindwave, Polar H10 (heart rate sensor), Neurobit Opitma+ 4 
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Table 4 

Measurement Name Output data Unit Remarks 

EEG 
Neurosky 
Mindwave 

Alpha1, Alpha2, Beta1, 
Beta2, Gamma1, 

Gamma2, Delta, Theta,  
Attention, Meditation 

- Export to .csv file 

HR Polar H10 Heart Rate BPM 
Export to .csv file 
or connection to 

Matlab 

GSR 
Neurobit  

Optima+ 4 
Conductivity S (Siemens) Export to .edf file 

4.1 Measurement station 
As part of the work, a measuring station was prepared. 
It consists of the equipment listed above: 

− EEG – Neurosky Mindwave Mobile 2 

− GSR – Neurobit Optima+ 4 

− HR – Polar H10 

 

Figure 3 – Measurement station scheme 

The data collected from the EEG measuring device do not have units, so they should only be com-
pared with each other. It is possible to measure all types of brain waves and export the results to a 
".csv" file.  The GSR sensor can be connected to the program cooperating with Neurobit Optima 
device. Output data is saved in ".edf" file. The Polar H10 sensor can be connected to the "Polar Flow" 
application available for phones and tablets or directly to the Matlab environment. The target is meas-
ured human pulse in BPM.  

5. Preliminary tests 
After the review of the measurement methods a series of tests were prepared to validate each sensor, 
to test the code written and to check that the psychophysical parameters do indeed change with the 
change in cognitive load. Free online tests from www.humanbenchmark.com were used. 
They were divided into three categories, depending on the issue they addressed, in order to see how 
exercise in different areas affects people. Two tests were conducted in each category: 
Reaction time category:  

− Task 1: test reaction time by clicking the mouse button when the screen changed from red to 

green 

− Task 2: click as quickly as possible on the successively appearing targets. 

Figure patterns category: 

− Task 1: memorise and associate words; the participants had to decide whether the displayed 

word had already appeared before or whether it was a new word 

− Task 2: memorise the displayed sequence of squares and then mark it correctly. 
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Number patterns category: 

− Task 1: memorise the displayed number, with each level the number of digits increased 

− Task 2: memorise the order of the digits on the squares, and then to mark each of the covered 

squares in the right order. 

5.1 Results 
The tests were conducted for four participants. Based on the results of person A, the measurement 
analysis, data processing and final result will be presented. 
 

5.1.1 EEG Data 
 The following graphs show the raw data of the measurements made with the EEG and the processed 
data. The data has been passed through a low-pass filter, smoothed using Matlab's smooth function 
and outliers removed.   
 

 
 
 

5.1.2 HR Data 
 For heart rate measurements, only the removal of outliers in the data was applied. 

Figure 4 – On the left raw data of EEG engagement index, on the right processed data 

 

Figure 5 – On the left raw data of EEG engagement index, on the right processed data 
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5.1.3 GSR Data 
 For data collected with GSR, smoothing was used and outliers were removed. 
 

 
 

5.1.4 Test results 
 
The table below shows the results and the calculated engagement index of person A. The coefficients 
obtained with biofeedback mean: 

− in the case of GSR measurement the baseline value was subtracted from the mean value of 

each attempt, the disadvantage of this measurement is that the average value increases with 

the duration of the test, 

− in the case of EEG measurement, the higher the value of the index, the greater the involve-

ment/effort of the subject, 

− in case of HR the closer the value is to 1, the more relaxed the subject was - the better he/she 

coped; the closer the value is to 0, the more stressed the subject was. 

 

Analyzing the following test categories:  

• Reaction time: worst results on first attempt, lowest hr index indicating stress; best results 

on second attempt, medium level of stress from hr, lower gsr value than on third attempt, low 

index eeg indicating less involvement 

• Figure patterns: the best result was obtained on the second attempt, high eeg index indicates 

high involvement, low hr index indicates increased stress; on the first attempt slightly worse 

results were obtained, but the person was less stressed and less involved; on the third at-

tempt coefficients indicate low stress and involvement, which may be due to fatigue during 

the test  

• Number patterns: as in the previous cases, the best result was obtained on the second at-

tempt, the EEG indicates quite high involvement and the hr index indicates medium relaxa-

tion. 

 
 
 

Figure 6 – On the left raw data of EEG engagement index, on the right processed data 
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In addition, sample graphs for person A during the second attempt at the number patterns task are 
presented. 
 

 
 

 
 
 
 
 
 
 
 
 
 

 

Figure 7 - EEG, HR and GSR results for person A during second attempt of number patterns task 

Table 5 
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In all the graphs you can see an increase in cognitive load from around minute 1 and a decrease around 
minute 2. On the EEG chart this occurs a little earlier before 1 and before 2 minutes. 

Table 6 

 
The results of the individual tasks correspond to the results obtained with the sensors. Person C 
achieved the best results, the engagement index for EEG was the highest (also comparing to baseline 
values) - highest engagement, the engagement index for HR was the highest - lowest stress. 
Comparing person A and D, who received similar results, it can be observed: 

− Reaction time: A performed better than D, the biofeedback indexes indicate this (higher 

𝐸𝑒𝑒𝑔 so more engaged and higher 𝐸𝐻𝑅 so less stressed) 

− Figure patterns: both subjects had similar test results, taking into account the biofeedback in-

dexes A did better (lower 𝐸𝑒𝑒𝑔 or not so much effort and higher 𝐸𝐻𝑅 so less stressed) 

− Number pattern: better results were obtained by D, the biofeedback results also show this 

(higher 𝐸𝑒𝑒𝑔 and higher 𝐸𝐻𝑅) 

Person B performed quite well but was also very engaged and stressed - high 𝐸𝑒𝑒𝑔 values and very 

low 𝐸𝐻𝑅 values. 
Finally, based on the tests performed, it can be concluded that biophysical parameters change with 
cognitive load and engagement. 

6. Designed system 

6.1 Input data for adaptive system 
The changes in mode of operation in the developed system are based on the assessment of opera-
tor’s functional state. It is evaluated using performance measurement (Performance Index) and en-
gagement assessment (Engagement Index). Two different engagement measurement techniques can 
be applied, objective and subjective. The former one is based on biofeedback analysis as described 
in the first part of the article. Subjective workload can be measured using several types of question-
naires enabling the operator to rate the level of workload that he experiences. In this study a simplified 
version of NASA Task Load Index was used. It enables the operator to subjectively rate the workload 
along six different categories: mental demand, physical demand, temporal demand, performance, 
frustration and effort.  
The final goal is use the three parameters, performance and both subjective and objective workload 
measurement, to initiate changes in task difficulty. However, in case when some data are not available 
or it’s not possible to ask the operator for subjective assessment due to e.g. time constraints, the 
system can operate using only one or two of these parameters. Since the research on adaptive auto-
mation was conducted in parallel with the one exploring the effects of workload on biofeedback, the 
method of evaluating workload based on physiological measurements for this particular study was not 
developed yet. In case of the experiments described below system operation was driven by either 
only Performance Index or Performance Index and NASA TLX results. 
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6.2 Fuzzy logic approach for workload assessment 
Due to individual differences, uncertainty of human behaviour and the criteria for the operator’s mental 
state evaluation are ambiguous and difficult to define with typical logic approach. It was decided to 
apply Fuzzy Logic for human functional state assessment. Considering its high ability to cope with 
non-crisp processes it is assumed to be efficient in analyzing human non-linear behavior. 
It was necessary to define membership functions for all inputs (Performance and Engagement – ob-
jective and subjective) and for the output (mental workload) of the fuzzy model. The next step was to 
define rules that describe the relations between inputs and the output. 

 
Figure 8 - FIS (Fuzzy Inference System) Process Chart  

6.2.1 Membership functions 
The values and ranges of the membership functions were specified following the analysis of baseline 
experiment described below. Each membership function can be defined with two parameters: levels 
of signal and curve of the signal. In this case the membership functions of all inputs and output are 
triangular or trapezoidal. 
Performance Index was divided into three levels: low, average and high. 
Engagement Indices, both subjective and objective, also have three levels: 

− Low – the operator has little situation awareness and might be not able to cope with an emergency 
situation 

− Optimum – the operator is engaged in the task but is not overloaded and can react to the emer-
gency 

− High – the operator is stressed, frustrated, and is not able to cope with current task demands 
Five levels of fuzzy logic output, mental workload, were defined: very low, low, optimum, high, very 
high. 

 

 

Figure 9 – Membership Functions  
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6.2.2 Fuzzy Rules 

After specifying the membership functions, the rules specifying the logic used to map input data to the 

relevant output were created. The rules were initially based on the assumptions described earlier 

illustrated on Figure 1 and were later confirmed during human-in-the-loop experiments. Fuzzy rules 

are written in the following form: 

 
If (PI low) and (EI_objective low) and (EI_subjective low) than mental_workload very low 

6.3 Simulink model 

The adaptive system design was implemented in MATLAB/Simulink. 

 
Figure 10 - Adaptive system Simulink model 

The system provides a user with the possibility to choose between four modes of operation: three 

difficulty levels and adaptive mode where task difficulty is dynamically adjusted by the system. 

Apart from that, a user can specify the width of optimal workload range within which it is assumed that 

the operator’s engagement and performance are optimal and task difficulty does not need to be 

changed. Additionally, one can select the task to be executed, engagement assessment methods 

(objective/subjective) as well as task durations and number of task sessions. 

The program launches the task application for the amount of time defined as task duration, then col-

lects performance and engagement data that serve as inputs to fuzzy controller that evaluates the 

operator’s mental workload. If the value of mental workload fits within the optimal range, task difficulty 

remains the same. However, if the state of underload or overload is detected, task level is increased 

or decreased respectively. 

7. Methodology 
The adaptive system was tested during human-in-the-loop experiments in order to determine if it is 
effective in balancing workload and augmenting task performance. It was expected that implementing 
the system would help to neutralize workload by increasing it in the underload condition and lowering 
in the overload condition. It was further assumed that neutralizing workload would positively affect 
task performance. 

7.1 Tasks and experimental conditions 
The system was initially designed to be applied to one of two different tasks, Multi-Attribute Task 
Battery II or joystick task, both described below. With minor modifications in the Simulink model it can 
work with any other task set. The only requirement is the possibility to change task difficulty and 
measure performance. 
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7.1.1 Multi-Attribute Task Battery II 

Multi-Attribute Task Battery II is a computer based multitasking environment designed by the NASA 

to evaluate operator’s mental workload and performance during the execution of a benchmark set of 

tasks. The tasks are supposed to be similar to activities that crew members need to perform in flight. 

 

 
Figure 11 - Multi-Attribute Task Battery II [14] 

System Monitoring (SYSMON) task is divided into two sub tasks: scales and warning lights. Each scale 
has an indicator light that fluctuates in the middle. When it gets near the top or the bottom, the user 
should respond through the keyboard or with a mouse. In normal conditions the lights’ colors are green 
and white. When the green turns off or the white turns red, it indicates system failure that the operator 
should react to by pressing the affected rectangle. 
Communications (COMM) task simulates pilot interaction with air traffic controller. Operator hears mes-
sages asking him to change frequency of a specific radio but should respond only to the requests using 
the aircraft call sign of NASA504. 
While executing Tracking (TRACK) task the operator uses joystick to keep the target at the grid center. 
The task operates in either automatic or manual mode. The mode of operation can be switched several 
times during task execution indicating automation failure or fix. 
The goal of the Resource Management (RESMAN) task is to maintain the amount of fuel in tanks A 
and B at the optimal level of 2500 units by transferring fuel from lower supply tanks through the use of 
pumps. When a pump is red, it is not operational  and cannot be turned on. 
The table below presents task parameters assigned to different levels of difficulty. The values represent 
the number of events per each 60 seconds of tasks execution. 
For SYSMON tasks, the difference of difficulty was mainly manifested on different number of warnings. 
Difficulty of COMM tasks was manipulated by changing the amount of requests that the operator should 
respond to (OWN) or ignore (OTHER). In case of TRACK tack the difficulty was determined by the 
proportion of manual versus automatic states. For RESMAN tasks, difficulty was distinguished by 
changing the number of pump failures. 
Additionally, in difficult and medium task conditions the operator is supposed to execute all MATB tasks 
while in easy task conditions only 2 tasks are active: TRACK and another one randomly selected from 
remaining: SYSMON, COMM and RESMAN. 

Table 7 - MATB II task difficulty levels 

difficulty 
level 

SYSMON TRACK COMM RESMAN 

lights scales time in MANUAL mode OWN OTHER pump failures 

easy 0 1 25 s 1 0 1 

medium 1 1 35 s  1 1 3 

difficult 3 4 40 s 2 2 6 
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Performance Index is obtained as average score across all executed tasks. The formulas used to cal-

culate individual task scores are presented below.  

In case of system monitoring and communications tasks performance is determined by calculating the 

percentage of time the task was in an incorrect state in relation to the total time it could be in a correct 

state. The formula used to compute the percentage of incorrect system time 𝑋𝑖 is: 

𝑋𝑖 =  1 −  
𝐶⋅𝑅𝑇+𝑁⋅𝑇

(𝐶+𝑁)⋅𝑇
  (1) 

𝑅𝑇 is the average response time, 𝑇 is timeout value after which the task is reset if there is no opera-
tor response, 𝐶 is the number of correct responses and 𝑁 represents the number of times the system 
timed out without user response. Then the subtask’s score is determined as: 

𝑆𝑌𝑆𝑀𝑂𝑁 𝑇𝑎𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 =  100 ⋅ (1 − 𝑋𝑆𝑌𝑆𝑀𝑂𝑁)  (2) 

𝐶𝑂𝑀𝑀 𝑇𝑎𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 =  100 ⋅ (1 −  𝑋𝐶𝑂𝑀𝑀)  (3) 

The tracking task performance is calculated using the RMSE (root mean square error) in pixels be-
tween the target and the grid center. 

𝑇𝑅𝐴𝐶𝐾 𝑇𝑎𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 =  100 ⋅ (1 −  
𝑅𝑀𝑆𝐸

𝑀𝑎𝑥 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)  (4) 

The resource management performance was evaluated by calculating mean fuel level error in tanks 
A and B in relation to desired fuel level 𝐿𝐹. 

𝑅𝐸𝑆𝑀𝐴𝑁 𝑇𝑎𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 =  100 ⋅ (1 −  
𝐸𝐴,𝐵

𝐿𝐹
)  (5) 

7.1.2 Joystick task 

The second task was designed similarly to the tracking task implemented in [15]. The operator is 
asked to follow the signal appearing on the screen using a joystick. Three different task conditions 
can be applied.  

 

   
   (a)           (b)       (c) 

Figure 12 – joystick task difficulty levels (a – easy, b – medium, c - difficult) 

 

Following the approach implemented in [15], in each task condition the reference signal is supple-

mented with the same pulse signal. Human performance evaluation is based on the analysis of the 

effectiveness in these selected time intervals (marked by dashed rectangles) when reference signal 

was identical regardless of current task difficulty level. Task score is based on the characteristics of 

human model which is identified by using the trajectory of the signal that the subject had to follow as 

an input and the response of the operator as an output. For this research human dynamic model was 

adapted from [16]: 

𝐻(𝑠) =
𝐾(1+𝑇𝑧𝑠)𝑒−𝑇𝑑𝑠)

(𝑇𝑤
2𝑠2+2𝜁𝑇𝑤𝑠+1)

 (6) 
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In case of this task Performance Index is calculated using step-response characteristics for the identi-
fied human dynamic model, rise time 𝑇𝑟 and peak overshoot 𝑃𝑂. 

𝑃𝐼 = 100 ⋅ (
0,5

1+𝑇𝑟
+

0,5

1+𝑃𝑂
) (7) 

7.2 Baseline experiments 

In order to confirm initial assumptions and determine threshold values and ranges for membership 

functions baseline experiments were conducted first. Three participants were performing first 3 ses-

sions (60 seconds each) of joystick task and then 1 session (120 seconds) of MATB II and at low and 

high level of difficulty. During task execution both, their performance as well physiological reactions, 

were registered. While participants were performing joystick task, their heart rate (HR), electroen-

cephalography (EEG) and galvanic skin response (GRS) were measured. Since during MATB II tasks 

the subjects needed to use both hands, GSR data were not collected. Participants were asked to fill 

NASA TLX questionnaire only when executing MATB II tasks. In case of joystick task, workload as-

sessment was based only on performance data. 

Table 8 - Results of baseline experiments (mean and standard deviation) 

task 
difficulty 

level 
Performance 

Index 
NASA 
TLX 

heart 
rate 

[BPM] 

EEG  
index [-] 

GSR [𝜇𝑆] 
mental 

workload 

MATB 
II 

easy 
80,55  
(7,66) 

15  
(7,84) 

70,79 
(15,15) 

0,4517 
(0,1034) 

- 20,07 
(6,98) 

difficult 
56,39  
(8,10) 

75,72 
(10,19) 

74,47 
(16,75) 

0,3637 
(0,0595) 

- 91,58 
(0,47) 

joystick 
task 

easy 
80,77 
(5,60) 

- 
69,83 
(9,01) 

0,4534 
(0,1532) 

4,7965 
(1,5943) 

74,77 
(3,73) 

difficult 
79,56 
(1,65) 

- 
74,75 

(13,33) 
0,4424 

(0,1467) 
5,1078 

(1,5198) 
75 
(0) 

 

(a) 

 

(b) 
Figure 13 - Results of baseline experiments (a - MATB II, b - joystick task) 
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Considering the results of mental workload assessment during joystick tasks, the system might not be 
able to correctly identify whether performance decrement is due to overload or underload if evaluation 
is made using solely performance data. In case of MATB II tasks, where NASA TLX results were also 
available, the results of human workload assessment properly reflect experimental task conditions. 

7.3 Adaptive automation system validation 
In order to evaluate the impact of using the developed system, three subjects were asked to complete 
the same tasks but this time task difficulty was adjusted in response to variations in estimated workload. 
They were performing the tasks in 10 minute sessions, after each 60 seconds the system could change 
task difficulty accordingly to the operator’s functional state. Analysis of the results demonstrates that 
the system was efficient in maintaining the perceived workload within reasonable range. The overall 
performance did not significantly improve comparing to the baseline experiments, however during the 
whole experiment it remained relatively high. The table below presents the summary of task results 
performed by humans assisted by the adaptive system developed for this research. 

Table 9 - Results of adaptive system experiments (mean and standard deviation) 

task Performance Index NASA TLX mental workload 

MATB II 75,55 (8,25) 53,18 (6,83) 48,08 (20,08) 

joystick task 76,42 (6,06) 53,28 (12,06) 48,75 (22,51) 
 
Based on the experiment data of one of the subjects, the figures below demonstrate how the system 
operates in time and how it reacts to changes in human performance and self-reported workload. 

 
        (a)       (b) 

Figure 14 - Experiment data (a – joystick task, b – MATB II) 

The main variables logged during the experiment are shown graphically. PI demonstrates variations 
in task performance, EI presents fluctuations of self-reported engagement and MWL shows the results 
of mental workload assessment obtained using fuzzy logic approach. The dashed lines represent 
threshold values for optimal workload. The bottom trace shows how task difficulty was adjusted 
throughout the experiment. As expected, the system detects changes in human performance and 
engagement and reacts accordingly by increasing or decreasing task difficulty. 

8. Potential applications 

The idea presented in the paper shows, that the application of an adaptive system might be a useful 
tool in various complex-system domains. The authors of [5] have demonstrated that such system can 
be successfully applied to reduce workload and increase performance in Air Traffic Management con-
text. They could also be applied in videogames domain where physiological signals can be used to 
infer relevant mental states in order to adapt game difficulty to a more desirable level and keep the 
gamer sufficiently challenged and engaged [17]. This methodology can also be applied to other, 
safety-critical, domains such as in aviation and driving e.g. to adaptively switch control of the plane or 
car depending on the needs of the operator [18]. The research described in [19] proves that adaptive 
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automation can be implemented to create an enhanced command and control infrastructure that en-
abled more effective operation of unmanned vehicles by reducing workload and improving situation 
awareness, coordination and performance of SUAS (Small Unmanned Aircraft System) crews. This 
solution could also be beneficial in the process of UAV operator’s training for both the candidate and 
the instructor. Adjusting task demands to individual needs would adapt the system to the candidate 
and keep him challenged and engaged without imposing excessive stress and overload. By monitor-
ing candidate’s mental state the system could also be used to detect how the potential candidate 
reacts to the growing stress. Providing the instructor with both, task score and candidate’s mental 
state, would give him wider field of view of the real state of the pilot to adequately assess his abilities. 

In general, the application of this kind of technology could enhance the cooperation between humans 
and machines, improve the overall performance and as a result contribute to higher safety standards 
[20]. 
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