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Abstract

It is estimated that almost one million debris greater than 1 cm currently orbit the Earth, posing hazard to
operational satellites. Therefore, the traditional piece-by-piece approach, to monitor the evolution of such
small space debris, is computationally prohibitive. This problem is here addressed through an analogy with
fluid dynamics, considering the population of fragments as a cloud, whose density is numerically propagated
in the phase space of Keplerian elements. The main goal of this study is to develop a model that is able to
deal with fragmentation in any orbital region and under any dynamical regime. This objective is achieved by
combining the method of characteristics, applied to the continuity equation, with the phase space splitting into
bins.
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1. Introduction
The growing dependence of our daily lives on space services has caused a massive growth in space
activities over the past decade. While it sounds fascinating, the ever-growing population of objects
orbiting the Earth could be detrimental to future space missions. It is estimated that more than one
million debris objects greater than 1 cm currently orbit the Earth [1], posing a hazard to operational
satellites. The traditional piece-by-piece approach, to monitor the evolution of such small space de-
bris, is not feasible from a computational point of view. This problem has been elegantly addressed
through an analogy with fluid dynamics. At first, the small fragments were modelled in terms of their
spatial density [2], whose evolution in time was obtained thanks to the continuity equation. In [3], [4],
the Method Of Characteristics (MOC) was adopted to find analytical solutions to the continuity equa-
tion in the phase space of a subset of Keplerian elements, under simplified orbital regimes, which
limited the analysis to fragmentations in Low-Earth-Orbits (LEO). The Starling suite was developed
at Politecnico di Milano [5] in the framework of the continuum approach, to deal with debris frag-
ments propagation of any dimension and subjected to non-linear dynamics. This approach allowed
to potentially extend the continuum approach to any orbital regime. In [5], a Gaussian Mixture Model
(GMM) was selected as density interpolation technique; reference hypersurfaces were used to map
the density distribution into a modified phase space, more suitable to be represented by Gaussian
distributions. As specified in [5], the method is not currently able to accommodate forces that lead to
resonances on a small subset of the phase space, as it could be the case of third-body perturbation
or solar radiation pressure. Such resonances tend to separate, or branch out, parts of the distribution
from the main bulk of the characteristics.
This work aims at developing a method, for propagation and interpolation of the fragments’ cloud den-
sity, able to deal with any orbital regime. A binning approach is adopted for the density interpolation in
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the six-dimensional phase space of Keplerian elements and area-to-mass ratio. The MOC is adopted
for the propagation of the debris density under orbital perturbations. The reference characteristics to
be propagated are sampled from a domain defined according to probabilistic considerations on the
way fragments distribute in the phase space.

2. Estimation of the initial density distribution
This section describes the method adopted for computing the initial density distribution. The idea is
to define, through probabilistic considerations, the phase space domain that the fragments will oc-
cupy after the fragmentation event and to estimate the density in all regions belonging to it, through a
binning approach. In other words, the density is evaluated in each bin belonging to the domain; if the
grid is fine enough, despite of the discontinuous nature of the method, the computed density distribu-
tion well represents the initial cloud of fragments. The characteristics to be propagated through the
MOC are eventually sampled from the estimated fragments’ density. This approach allows both to
strongly reduce the computational time and to improve the accuracy of the model, since the density
is evaluated only in those regions that are most likely to have fragments.

2.1 Probabilistic definition of the initial domain
The definition of the initial domain proposed in this paper depends on the model adopted for estimat-
ing the fragments’ spreading due to a fragmentation event. Indeed, it relies on a probabilistic analysis
on the likelihood for a debris to reach a region of the phase space. The breakup model adopted for
this study is the reformulated NASA Standard Breakup Model (SBM) proposed in [6]. The NASA SBM
is reformulated as a probability distribution function dependent on the fragments characteristic length
!, area-to-mass ratio �/< and the ejection velocity Δ{, which is assumed isotropically distributed
in direction. The model, which relies on both historical orbital data and ground-based impact tests,
assumes the following probability functions:
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where V is a unitless parameter dependent on the type of fragmentation; _, j and a are the loga-
rithms to base 10 of the characteristic length !, area-to-mass ratio �/" and ejection velocity Δ{,
respectively; _0 and _1 are the logarithms to base 10 of lower !0 and upper !1 boundaries on the
characteristic length; ` (8)j , f (8)j , `a and fa are mean and standard deviation of normal distributions
N in j and a, which depends on the type of fragmentation; U8 are factors to weight the relative
importance of the normal distributions in the conditional probability in j dependent on _.
The threshold values for the logarithm to base 10 of area-to-mass ratio, j, and ejection velocity, a, are
selected according to the related cumulative density functions ���j and ���a |j. Indeed, since the
area-to-mass ratio is included in the set of variables defining the phase space, the proposed model
firstly defines the grid in j according to the cumulative density function���j, and secondly computes
the domains in Keplerian elements, for each bin in area-to-mass ratio, according to ���a |j. In other
words, the domain in Keplerian elements probabilistically reachable by fragments varies depending
on the range in area-to-mass ratio considered.
The cumulative density function in j can be computed through marginalisation over _, as follows:
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The threshold value in j is computed as:

jb = ���
−1
j (b) (3)
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where b is a factor ranging from 0 to 1, which can be tuned according to targeted level of accuracy. As
already mentioned, the range in a is defined according to the conditional cumulative density function
���a |j, which is simply the ��� of a normal distribution. Therefore, the following method is adopted:

a[ = ���
−1
a |j ([) = `a (j) + : ([)fa (j) (4)

where [ is a factor ranging from 0 to 1 and : ([) is a dependent variable, which tunes the displacement
in a with respect to the mean value `a according to [.
The domain in area-to-mass ratio and ejection velocity must be converted into a domain in area-to-
mass ratio and Keplerian elements. The objective is to compute the maximum variation in Keplerian
elements, with respect to the fragmentation point, associated to the ejection velocities that satisfy the
condition:

Δ{ ≤ 10a[ (5)

where a[ is the threshold value defined in Eq. (4). Therefore, in the following, the variation of the
Keplerian elements due to an ejection velocity Δ{ will be derived, as function of two angles W and q,
which define the direction of the impulse. The ejection velocity vector is here defined in the radial–
transversal–out-of-plane (RSW) reference frame, as follows.

�v = {Δ{ cos W cos q,Δ{ sin W cos q,Δ{ sin q}) (6)

where W and q are the in-plane and out-of-plane angles, respectively. When the fragmentation oc-
curs, the generated fragments are assumed to share the same initial position, but to have a velocity
that depends on the impulse they received. Therefore, the fragments are distributed according to
a 4D density function in velocity and area-to-mass only. When moving to a distribution in Keplerian
elements, the same dimensionality must be preserved; hence, the trasformed distribution will be in
a subset of three Keplerian elements and area-to-mass ratio [7]. The remaining dependent Kep-
lerian elements are function of the independent ones and of the fragmentation point location. The
same concept can be analysed from anther perspective: since no uncertainty on the initial position
is considered, the orbits of the generated fragments must intersect the orbit of the parent object in
the fragmentation point. This means that the new orbits have only three degree of freedom, that can
freely vary in the domain that satisfies the constraint on velocity expressed in Eq. (5). Hence, only
the variations of semi-major axis 0, eccentricity 4 and inclination 8, due to the ejection velocity vector
of Eq. (6), will be computed for defining the initial domain.
The variation of the semi-major axis Δ0 is computed from the energy equation, as follows.

Δ0(Δ{, W, q) = `A

2` − A ({ + Δ{<(Δ{, W, q))2
− 0 (7)

where ` is the planetary constant of the Earth; A and { are the position and velocity modules of the
parent object at the fragmentation epoch; 0 is the semi-major axis of the parent object orbit; Δ{< is
the variation of the velocity module due to the fragmentation event, defined as follows.

Δ{<(Δ{, W, q) =
√
({C + Δ{ cos W cos q)2 + ({A + Δ{ sin W cos q)2 + (Δ{ sin q)2 − { (8)

where {C and {A are the transversal and radial components of the velocity of the parent object at the
fragmentation epoch.
The eccentricity vector of a fragment after the fragmentation can be computed as:

e + �e = 1
`
(v + �v) × (h + �h) − r

A
(9)

where h and �h are the angular momentum of the parent object orbit and its variation due to the
fragmentation, respectively, whose sum is defined as follows.

(h + �h) = r × (v + �v) (10)
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where, again, the position vector r is kept unchanged, since no uncertainty on the initial position is
assumed. The difference between the norm of the eccentricity vector of Eq. (9) and the eccentricity
of the parent object orbit 4 allows the computation of the eccentricity variation Δ4 due to a variation
of velocity according to the ejection velocity vector of Eq. (6).

Δ4(Δ{, W, q) = | |e + �e| | − 4 (11)

The variation of the inclination Δ8 is computed as follows.

Δ8(Δ{, W, q) = arccos
(
ℎ8=.I + Δℎ8=.I
ℎ + Δℎ

)
− 8 (12)

where ℎ8=.I and Δℎ8=.I are the out-of-plane components of the angular momentum of the parent object
orbit and its variation due to the fragmentation in the inertial reference frame, whose sum is computed
as follows.

ℎ8=.I + Δℎ8=.I = '3(Ω)'1(8)'3(l + 5 ) (h + �h) · k̂ (13)

where 8, Ω, l and 5 are inclination, right ascension of ascending node, argument of periapsis and
true anomaly of the parent object orbit at fragmentation epoch; k̂ is the unitary vector in the direction
of the / axis of the inertial frame; '1 and '3 are the rotation matrices about G and I axes; h + �h is
the angular momentum of the orbit of a generic fragment in the RSW reference frame.
So far, the variations of semi-major axis, eccentricity and inclination depend on the in-plane and
out-of-plane angles of the ejection velocity vector. In order to define the sub-domains in Keplerian
elements associated to each �/" bin, the dependency on the two angles must be filtered out. One
approach could be to compute the maximum variation of the elements, given Δ{; however, this would
cause a significant growth of the domain, thus covering regions of the phase space with an extremely
low density value. Indeed, the probability density function in such a region is further scaled by a
factor 1/2c2, because that variation in keplerian element can be achieved with a single combination
of W and q. If factors b and [ of Eqs. (3) and (4) are chosen close to 1, the sub-domains can be more
conveniently computed according to the maximum average variation of the Keplerian elements, as
follows.
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where ΔU8 is the variation of the 8Cℎ Keplerian element and the plus and minus signs indicate the
regions in the W–q domain that lead to a positive and negative variation of the Keplerian element U8,
respectively.
When the ejection velocity Δ{ is higher than the impulse needed to escape the Earth gravity field,
some combinations of W and q lead to a singularity in the variation of the semi-major axis Δ0 and
negative (i.e., hyperbolic) semi-major axis values for the fragments’ orbit. This causes the average
semi-major axis variation Δ0 to acquire a meaningless value; therefore, Δ0 is computed from the
definition of the module of the angular momentum in terms of Keplerian elements, as follows.

ℎ + Δℎ =
√
`(0 + Δ̃0)

(
1 − (4 + Δ4±)2

)
(15)

where Δ4± is the average variation of eccentricity, which might be either positive or negative, depend-
ing on the angles W and q. Eq. (15) can be solved for Δ̃0, which leads to an expression of the kind:

Δ̃0 = Δ̃0(Δ{, W, q,Δ4±) (16)

The approximated variation of the semi-major axis Δ̃0 has a singularity when the fragments, subjected
to an ejection velocity Δ{ are, on average, injected on hyperbolic trajectories. The average variation
of the semi-major axis, in positive and negative directions, can be computed according to Eqs. (14),
by adopting the local approximated semi-major variation of Eq. (16).
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2.2 Monte Carlo integration and density averaging
Once the initial domain is defined, the density distribution is estimated through a binning approach.
The phase space domain is partitioned into bins and the density is averaged over the bin volume. To
this aim, the probability density function in ejection velocity and area-to-mass is transformed into a
density function in the subset of Keplerian elements (0, 4 and 8), through change of variables [7], as
follows.

?α,�/" =
?�v,�/"

(
i−1
αs(α)

)
det �3×3

αs

(17)

where iαs is the transformation from Keplerian (α) to Cartesian (s) coordinates, with the Jacobian
�αs defined as:

�8 9 =
mi8

mG 9
(18)

The average fragments density in each bin is computed as:

=8 =
#

+ 8α X�/" 8

∫ �/" 8
2

�/" 8
1

∫
+ 8
α

?α,�/"dαd�/" (19)

where =8 is the density in the 8Cℎ bin; + 8α is the volume in Keplerian elements of the bin; X�/" 8

is the range in area-to-mass ratio of the bin; # is the total number of fragments generated by the
fragmentation event [8]. In this study, an equally sized binning is adopted; hence, the volume of each
bin is constant throughout the whole phase space domain.
Adopting a binning approach, the density varies discretely through the domain; however, if the grid is
fine enough, the bins density is able to well describe the shape of the density distribution. Therefore,
it is of paramount importance to properly define the step-size in each dimension of the phase space.
Since the density is averaged at bin level, the smaller is the variation of the density over the bin
volume, the more accurate the approximated fragments’ density is. Each element of the gradient of
the density with respect to the Keplerian elements indicates how fast the density is changing locally;
thus, it can be used as an indicator of how small the step-size in each Keplerian element XU8 should
be to grasp the variation of the density in the phase space. Since an equally-sized binning approach
is adopted, the average module of the gradient of the density is chosen as reference for defining the
step-size in semi-major axis, eccentricity and inclination. It is computed as follows.���� m=mΔU8

���� = #

2c2Δ{

∫ Δ{

0

����m?a |jmΔ{

���� ∫ 2c

0

∫ c/2

−c/2

����mΔU8mΔ{

����−1
dqdWdΔ{ (20)

where the derivatives in Eq. (20) are computed according to Eqs. (1c), (11), (12) and (15). The
following heuristic relation between the step-sizes and the derivatives of the density with respect to
the Keplerian elements is adopted: ���� m=mΔU8

���� XU8 ≈ =max
A

(21)

where A is a factor that can be tuned according to the desired level of accuracy. Note that the left-
hand side of Eq. (21) is an estimate of the average change of density value associated to a step in
the Keplerian element U8.
Since the integrals of Eq. (19) cannot be solved in closed form, a Monte Carlo integration is adopted.
The number of samples upon which the density is averaged is defined on the basis of the local value
of the density gradient; indeed, the bigger is the variation of the density through the bin, the higher
should be the number of samples to be taken to accurately estimate the density mean over the bin
volume. The Monte Carlo integration integration is carried out in each bin of the domain, after having
checked the fulfilment of three additional constraints:

1. There exists at least one set of Keplerian elements belonging to the bin such that the perigee
is above the re-entry altitude.
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2. There exists at least one set of Keplerian elements belonging to the bin whose related orbit
intersects the parent object orbit in the fragmentation point.

3. The ejection velocity needed to reach the bin satisfies Eq. (5).

After the averaging procedure, each bin belonging to the domain probabilistically and physically
reachable by fragments has an associated density value. The total number of fragments associated
to the estimated density distribution can be easily computed as:

#̃ = +U X�/"
∑
8

=8 (22)

3. Fragments’ cloud density propagation and interpolation
The fragments’ cloud density is propagated applying the method of characteristics [9] to the continuity
equation, here recalled:

m=

mC
+ ∇ · (=F ) = 0 (23)

where C is time, = the phase space density, x the phase space variables and � = dx
dC the dynam-

ics. The characteristics are here propagated semi-analytically using the Planetary Orbital Dynamics
(PlanODyn) suite [10], following the approach firstly introduced in [11]. The considered phase space
variables are semi-major axis 0, eccentricity 4, inclination 8, right ascension of ascending nodes Ω,
argument of periapsis l e area-to-mass ratio �/". The characteristics to be propagated are ran-
domly sampled from the bins; if the grid used for the estimation of the density is fine enough, one
sample per bin is sufficient to describe the dynamical evolution of the cloud. On the contrary, if the
fragments spread out in a huge domain, the steps computed according to the density gradient may
be too big to grasp the dynamical behaviour of the fragments under orbital perturbations. Therefore,
the number of characteristics to be extracted from each bin is defined as follows.

#2 =

4∏
9=1

max ©­«
XG 9

XG
3H=

9

, 1ª®¬ (24)

where #2 is the number of samples per bin; XG 9 are the step-sizes in semi-major axis, eccentricity,
inclination and area-to-mass ratio computed when estimating the initial density distribution and XG3H=

9

is the needed resolution in the same variables in order to estimate accurately the dynamical evolution
of the fragments’ cloud.
The coordinates of the sampled characteristics, which are at this point defined in the subset of Ke-
plerian elements (0, 4 and 8), are expanded in full set of coordinates, by imposing the condition of
intersection with the parent object orbit in the fragmentation point. By imposing this constraint, four
possible solutions are generated for each subset of Keplerian elements, each of them associated to
a different density value, depending on the needed ejection velocity.
If propagated to the same epoch, the characteristics form a scattered point cloud in the phase space
domain. Therefore, the density distribution has to be recovered through interpolation. The sparse
matrix approach for binning proposed in [12] is here applied. Note also that a nearest neighbor-like
interpolation among neighbouring bins is additionally implemented to avoid holes in the distributions.

4. Case study
The studied case takes inspiration from the real fragmentation of a Russian Ullage rocket motor,
exploded in space at epoch 01/06/2016. The initial Keplerian elements are listed in Tab. 1.

Table 1 – Initial Keplerian elements. Ullage rocket motor fragmentation.

0 [km] 4 [-] 8 [deg] Ω [deg] l [deg] 5 [deg]
16143.0 0.568 65.07 94.03 134.02 216.50
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Fragments down to 1 cm are considered; adopting a scaling factor ( = 0.1 [8], the NASA SBM
estimates 950 fragments generated by the explosion of the motor. For computing the initial density
distribution, the parameters b and : ([) of Eqs. (3) and (4) are set equal to 0.997 and 2, which should
allow to represent 97.4% of the distribution. The corresponding threshold values of area-to-mass ratio
�/" and ejection velocity Δ{ are 6.604 m2/kg and 651.6 m/s . For the presented simulation, 10 bins
in area-to-mass ratio are considered.
The initial density distribution is depicted in Figs. 1 and 2, separating between independent (0, 4, 8
and �/") and dependent (Ω and l) phase space variables. The step-sizes computed according to
the density gradient are reported in Tab. 2.

Table 2 – Step-sizes for the estimation of the initial density. Ullage rocket motor fragmentation.

X0 [km] X4 [-] X8 [deg]
130.1 0.0057 0.69

Two characteristics are sampled from each bin, which lead to a total of 19802 characteristics to be
propagated. The propagation is carried out in a simplified dynamical model, which considers the drag
effect and the �2 perturbation only, for a period of 20 years. The proposed model is validated against
Monte Carlo propagation of the 950 fragments generated by the explosion. The comparison is done
on the number of fragments in orbit over time. The results are presented in Fig. 3.
As it can be noticed, the initial number of fragments is smaller than the total, since approximately 50
fragments reentered in the atmosphere during the first revolution around the Earth. The two profiles
follow almost the same trend and the difference between them oscillates between 3% and 5% of
fragments with respect to the total. This means that the density distribution captures from 95% to 97%
of fragments during the time considered. Furthermore, the profile in Δ#% does not seem to follow
a monotonic trend towards increasing error, which should ensure the validity of the model also over
longer periods.

5. Conclusions
The main goal of this paper was to define a method for the propagation and interpolation of the frag-
ments’ cloud density able to deal with any orbital regime. The proposed approach probabilistically
computes the initial phase space domain in semi-major axis, eccentricity, inclination and area-to-
mass ratio according to the cumulative density functions in ejection velocity and area-to-mass ratio.
To avoid unnecessary large domains, an averaging procedure through integration over the ejection
velocity angles is efficiently implemented, which allows to increase the computational efficiency. Fur-
thermore, the singularity in the semi-major axis variation is solved, allowing to extend the analysis to
fragmentations with ejection velocities that cause some fragments to be injected on hyperbolic tra-
jectories. The initial density distribution is estimated through Monte Carlo integration at bin level. In
this framework, particularly relevant is the proposed autonomous definition of the step-size according
to the gradient of the density with respect to the Keplerian elements. The validation analysis was
still limited to a simplified dynamical model, where only the drag effect and the �2 perturbations were
considered. Since the method demonstrated to be accurate compared to the Monte Carlo simulation,
future works will be devoted to apply the proposed model to more complex dynamical models and in
different orbital regions.
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(a) Semi-major axis and eccentricity (b) Semi-major axis and inclination

(c) Semi-major axis and area-to-mass ratio (d) Eccentricity and inclination

(e) Eccentricity and area-to-mass ratio (f) Inclination and area-to-mass ratio

Figure 1 – Initial density distribution in semi-major axis, eccentricity, inclination and area-to-mass
ratio. Ullage rocket motor fragmenation.
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(a) Semi-major axis and right ascen-
sion

(b) Semi-major axis and argument of
periapsis

(c) Eccentricity and right ascension

(d) Eccentricity and argument of peri-
apsis

(e) Inclination and right ascension (f) Inclination and argument of periap-
sis

(g) Right ascension and area-to-mass
ratio

(h) Argument of periapsis and area-to-
mass ratio

(i) Right ascension and argument of
periapsis

Figure 2 – Initial density distribution in right ascension of ascending nodes and argument of
periapsis. Ullage rocket motor fragmenation.

Figure 3 – Number of fragments over time, comparison between Monte Carlo and binning approach.
Ullage rocket motor fragmenation.
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