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Abstract 

This paper proposes a model predictive control approach for a rigid satellite formation 
maintenance scenario with tangential and normal forces based on relative orbital elements, under the 
propelling of the Formation Flying L-band Aperture Synthesis (FFLAS) mission concept, proposed by 
the European Space Agency. FFLAS intends to increase spatial resolution to improve meteorological 
and climate prediction with the incomparable advantages of formation. Considering the underactuated 
propulsive system equipped in satellites of FFLAS mission and time-variant relative inclination vector 
of this rigid formation, it is crucial to propose an automatic control approach to maintain this kind of 
satellite formation at nominal scientific phase with the requirements of high efficiency and optimal 
consumption. Model predictive control is selected as the fundamental automatic control way and the 
detailed implementation algorithm for time-variant system is described in this paper. Additionally, the 
discrete dynamic motion is created based on relative orbital elements and is decoupled to two 
subsystems, in plane and out of plane. Only the tangential force is used to manipulate the relative 
orbital elements in plane through reconstructed error of controlled objects after empirical analysis. 
Extensive simulations and comparative analysis are carried out to verify this proposed approach. The 
method demonstrates encouraging results, shows a remarkable performance compared with actuated 
propulsive system and the constraint solution for this underactuated system using the quadratic 
programming in terms of accuracy and consumption. 

Keywords: underactuated system, rigid formation maintenance, model predictive control, relative 
orbital elements 

1. Introduction 

Satellite formation flying (SFF) is a majorly advance and constantly developing research field in 
space technology, causing some original applications in space mission. Multifarious attempts have 
been undertaken to achieve this kind of distributed mission architectures, with the advantages of 
reducing costs, development time, increasing safety and expanding possibilities for future mission 
concepts[1]. Various SFF missions have been launched to manifest rigorous stationkeeping, like the 
Magnetospheric Multi-Scale (MMS) mission from NASA, in which the spacecrafts achieved close 
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separation of only four-and-a-half miles apart[2]. One that eminent is the CanX-4 & 5 mission for 
demonstrating autonomous configuration and maintenance by University of Toronto, first research 
mission to form an along-track orbit of 1000m, 500m, and a projected circular orbit of 100m, 50m, 
specifically for two nano satellites with propulsion subsystem of cold gas[3].  

This study is conducted based on a SFF mission of FFLAS on a sun-synchronous orbit (SSO), 
development by the European Space Agency, Airbus, and Politecnico di Milano, intending to increase 
the imaging resolution for land and ocean applications by exploiting the virtual aperture given by the 
formation itself. This SFF mission includes three satellites, each of them would be equipped with 
propulsive system, which could provide the continuous forces in tangential and normal directions in 
the Local Vertical Local Horizontal (LVLH) coordinate frame. During the nominal scientific phase of 
SFF mission, it is pivotal to keep a rigid formation and a safe flight condition. Consequently, the 
automatic control approach is investigated for maintaining the nominal formation geometry with 
underactuated propulsive system, considering the orbital disturbance. This paper proposes a model 
predictive control approach for rigid satellite formation maintenance scenario with tangential and 
normal forces based on relative orbital elements. It’s mentionable that the separation distance of 
satellites is under 20 meters, which will be introduced in the following section. 

This paper is dedicated to obtaining an automatic controller of efficiently and optimization. 
Automatic robust control methods have always been the pivotal technology for the proximity operation 
of SFF and spacecraft rendezvous, and numerous ways have been proposed by the scholars, such 
as linear quadratic regulator (LQR)[3], sliding mode control (SMC)[4], model predictive control 
(MPC)[5] and so on[6]. Up to now, plenteous control approaches have been derived for FF issues. 
However, most of researchers speculate that the satellites for proximity operation is fully actuated, 
which means that the dimension of the control input is equal to the number of the degrees of freedom 
to be controlled. In recent years, much attention has been paid to the underactuated satellites, 
considering the plenty of advantages to reduce the total mass of spacecraft and decrease the cost 
with fewer thrusters, especially for micro/nano satellites. And a number of control approaches have 
been developed such that the formation objective is achieved via various underactuated forms. 
Godard et al. [8] explored the feasibility of formation station keeping and reconfiguration with the loss 
of radial/in-track control by linear sliding mode (LSM) technique, and the resulting closed-loop control 
system presented global asymptotic convergence. Huang et al.[9] derived analytical solutions for the 
optimal underactuated satellite formation reconfiguration problem using indirect optimization methods 
with the minimum principle. Then, Huang et al. further designed another fast nonsingular terminal 
sliding mode controllers to deal with the under-actuated formation reconfiguration problem in the 
presence of unmatched disturbances[10]. Liu et al.[11] proposed an adaptive collision-free formation 
control strategy for a team of underactuated spacecraft subject to inertial parametric uncertainties. 
The adaptive control scheme was developed based on a hierarchical framework by potential function 
and Lyapunov theory. Nevertheless, all of them are based on the relative states and reckon without 
considering the optimization of consumption simultaneously. 

MPC is an advanced control framework that optimizes predictive system behavior to determine 
the best current control input at each control step. It is also famous as receding horizon control, 
dynamical matrix control, and generalized predictive control. There are plenty of advantages to MPC 
implementation that influence its significant potential in the aerospace field. These advantages 
incorporate applicability to linear and nonlinear models, direct optimization of performance, handling 
of multivariable inputs and outputs, and systematic handling of multiple constraints. This kind of 
control have been applied for some space mission, for example, the Mars Sample Return (MSR) 
mission[12], which is the application of MPC towards spacecraft rendezvous of using a spacecraft to 
rendezvous and capture the soil from the Mars Ascent Vehicle (MAV) in a predefined orbit of Mars. 
Some scholars exploited the strategy and knowledge for proximity operation using MPC[13].  

The paper is organized as follow. Section 2 provides the relative state and geometry feature of 
this FFLAS mission on the Hill orbital frame and describe the time-invariant trait in the relative orbital 
element framework. Section 3 introduces model predictive control implement solution for the time-
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variant system and the discrete dynamic model used to erect the control system based on relative 
orbital elements, decoupled two subsystems, in orbital plane and out of plane. Furthermore, an 
approach of formation maintenance under underactuated propulsive system in orbital plane is 
proposed. Section 4 presents the disturbance form and executes plenty of simulations to demonstrate 
the approach proposed under different combined coefficients, compared with actuated model and the 
constraint solution for this underactuated system using the quadratic programming. Finally, section 5 
summarizes the work of this paper and presents future expectations. 

2. Description of the rigid formation in FFLAS mission 

The virtual center of FFLAS is selected an SSO at 775km of altitude, near circular orbit, with a 
local time of ascending node (LTAN) at 6:00 am. The task scenario of FFLAS is recommended by 
means of Hill orbital and relative orbital elements framework in detail, the rigid formation, and the 
control approach proposed is derived and applied for this task scenario. The formation is designed by 
COMPASS group in Politecnico di Milano, considering the balanced fuel consumption, sun shadowing 
effect, plume impingement, etc. And more details could be viewed in Ref 18. 

2.1 Hill orbital framework 

Hill orbital framework is utilized to describe the relative position of each satellite in formation, 
seen as Figure 1. The original center is located in the mass center of the chief satellite or a virtual 
center, which is regarded as the reference frame. Three vectors of T , N  and R  compose the 
coordinate axis. The vector T  is aligned with the tangential direction of the reference orbit, the N  is 
along the normal direction, and the R  completes the right-handed Cartesian frame. 

 
Figure 1 - The Hill orbital framework 

 

Figure 2 - The rigid formation nominal condition 
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The rigid formation mission of FFLAS in T-N plane during the nominal scientific period and the 
relative positions of three satellites are represented in Figure 2, including exact location data. Those 
satellites in the formation are identified as Sat 1, Sat 2, and Sat 3 respectively, placed at the vertex of 
an equilateral triangle of 13 m side. During the mission, the relative position of every deputy satellite is 
invariant, and the relative velocity is zero, which means the relative states of every satellite would be 
fixed referring to the virtual center and other satellites as the time of mission goes on. 

2.2 Relative orbital elements framework 

The ROEs describe the orbital elements of each satellite in the formation with respect to the 
reference orbit, a virtual center in this mission. Considering the mean classical Keplerian elements of 
the reference SSO and of a deputy satellite j  of the formation as { }, , , , ,c c c c c ca e i MωΩ  and 
{ }d d d d d da e i MωΩ‚ ‚ ‚ ‚ ‚  respectively, the relative orbital elements are designed in Eq. (1). 
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α  (1) 

where M  is the mean anomaly, u Mω= +  is the mean argument of latitude, = [ , ]x ye eδ δ δe  and 
= [ , ]x yi iδ δ δi  are the relative eccentricity and inclination vector, respectively. 

The ROEs of Sat 3 are regarded as the hover scenario referring to the chief satellite in formation 
and analyzed to valid the approach proposed in term of tracking control. The ideal trajectory of ROEs 
is depicted in Figure 3. To make it clear to understand in geometry, the ROEs are represented in form 
of ca δα . The ideal trajectory of relative inclination vector aδ i  is time-variant and other relative orbital 
elements are invariant, according to the analytical results. This study puts the emphasis on two 
aspects in this paper. The first one is the maintain control issue in orbital plane with underactuated 
propulsive system. The second one is the tracking control out of plane under time-variant ideal 
relative inclination vector ca δ i . 

 

Figure 3 - Ideal trajectory of relative orbital elements of the Sat 3 
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3. Control strategy 

In this subsection, the basic MPC implementation are introduced primarily. The basic structure of 
MPC is appropriate for the time-invariant control system, especially in the discrete dynamic model 
using relative orbital elements, due to the time-variant convolution matrix. Whereafter, linearized 
equation for ROEs and its discrete form are presented. Conveniently, the discrete dynamic is 
decoupled to two subsystems, in orbital plane and out of plane. Mentioned above, the subsystem in 
orbital plane needs to be controlled using only the tangential force. To solve this constraint problem, a 
novel method is derived that the discrete dynamic and error function for MPC implementation are 
reconstructed via further simplification, which would be more convenient to be executed for the micro 
calculator. 

3.1 Model Predictive Control Implement for Time-variant System 

MPC consists of an input horizon, a model of the plant behavior, and a minimized cost function to 
choose the current control input scheme. The choice of an input horizon depends on any significant 
dynamics in the system. The plant model is used to represent how the plant will respond given the 
future input horizon. The model must show the dependence of the plant response on the current 
measured variable and the future inputs from the input horizon to an accurate degree. The accuracy 
of the model depends on the application and errors that would arise from modeling the system 
behavior. The cost function is used as the criteria to determine which control action is best to choose. 
The cost function is the calculation that resolves the lowest numerical value to the cost. 

For a time-varying discrete system, at each time t  the model can also change over the prediction 
horizon. The general formulation of the model for SFF is expressed in Eq. (2) and (3): 

 ( ) ( ) ( ) ( ) ( )1k k k k k+ = +X A X B U  (2) 

 ( ) ( )k k=Y CX  (3) 

where, X ×∈6 6  denotes state vector of relative orbital elements, ×∈U 3 1  represents the input vector, 
( )k ×∈A 6 6  denotes the state transition matrix, and ( )k ×∈B 6 3  represents the convolution matrix.  

The purpose of control is to find out a set of predictive inputs ˆ( | )u k k , ˆ( | )1u k k+ , …
ˆ( | )1uu k H k+ − , and predictive output ˆ( | )1y k k+ , ˆ( | )2y k k+ … ˆ( | )py k H k+ , which make the objective 

function is minimum, based on the current output ( | )y k k  and current input ( | )1u k k− . The objective 
function is shown in Eq.(4), 

 
( ) ( )

ˆ ˆ( ) ( | ) ( ) ( | )
1

2 2

1 0

p pH H

i iQ i R i

V k y k i k r k i u k i k
−

= =

= + − + + ∇ +∑ ∑ , (4) 

where uH  is the control horizon, pH  is called the predictive horizon, ( )r k  is the ideal reference 
trajectory, ( )Q i  and ( )R i  are the diagonal weighting matrix of states and control input respectively.  

All predictive states could be obtained by the following equation,  

 ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )1k k k k k k k= + − + ∆X Ψ X Ω u Θ U , (5) 

where the vector ˆ ( )kX  denotes all predictive states over predictive horizon pH , the matrix ( )kΨ  
represents the transition matrix from initial state, the ( )kΩ  denotes the influence matrix on predictive 
states by last step control input, and the ( )kΘ  represents the influence matrix by every step control 
input increasement.  
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where iA  represents the transition matrix from initial state to i  -th step predictive states in the huge 
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matrix of ( )kΨ  and ( )kΘ , and jB  represents the convolution matrix at j  -th step in the huge matrix 
of ( )kΘ . Coherently, the symbol j  represents the j -th row of the element, and jj  represents the jj -
th column of the element in huge matrix of ( )kΘ . The detailed equations described above are utilized 
for the MPC implementation of time-invariant system. 

The ideal trajectory is defined in Eq. (11), which has been obtained and shown in Figure 3. 
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The objection function is described in Eq. (12) according to (4)  

 ˆ( ) ( ) ( ) ( )
2 2k k k k= − + ∆

RQ
V X Γ U . (12) 

The state errors are derived and depicted in Eq.(13)， 

 ( ) ( ) ( ) ( ) ( ) ( )1k k k x k k k= − − ∆ −ε Γ Ψ Ω U . (13) 

The optimal control input increment sequence could be calculated by a classical solution without 
any constrained problems, shown in Eq. (14), 

 ( ) 11
2optk −∆ =U H G , (14) 

where ( )2 T k=G Θ Qε , T= +H Θ QΘ R . 

In the rolling optimization strategy, the control input only adopts the first step of the solution, and 
at the next moment, a new optimal scheme will be figured out, which is the thought of rolling 
optimization. Therefore, the actual control input is the first vector of optimal input sequence, given by 

 [ ] ( )inp m m optI k×∆ = ∆u U0 0 0 . (15) 

Generally, the MPC algorithm are usually used with quadratic programming solution to solve 
some constraint problems, such as the path constraint, control input constraint and so on, mainly in 
inequality form. In this paper, the lack of radial force could be regarded as one kind of control input 
constraint, whereas the thrust magnitude provided by the electronic engine could satisfy the 
requirement of maintenance of this rigid formation, unlike orbital transfer that remand great magnitude 
force. Therefore, as for the underactuated system in this scenario, the lack of force in radial direction 
becomes the only one constraint problem to be solved using quadratic programming. In order to 
improve efficiency, a reconstruct dynamic model is proposed to meet the MPC algorithm without using 
the quadratic programming to achieve precise control accuracy in condition of lack of force in radial 
direction. 

To start using the control laws of MPC, the discrete dynamic model must first be defined. In next 
subsection, the actuated and underactuated discrete control model are described and introduced 
successively, based on the ROEs. The two discrete control models would be applied for the mission 
phase of FFLAS using the MPC strategy and the results would be analyzed and discussed in 
subsequent content. Underactuated discrete control model in orbital plane is derived according to the 
actuated model, but the error model is reconstructed and proposed for MPC implement in order to 
decrease the difficulty of calculation for automatic control. 
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3.2 Linearized Equation for ROEs and Discrete Actuated Control Model 

According to the literature[7], this linearized equation is developed using the dimensionless 
relative orbit elements to determine the relative motion of one deputy satellite in terms of the chief 
satellite or the virtual center. For further simplifications, it’s assumed that the chief is moving on a 
near-circular orbit, and the J2 perturbance is not considered in the relative motion due to the close 
distance. To linearize the equations of relative motion, it would need to be expanded to a first order 
differential equation using a Taylor series expansion and be centered about the chief orbit, depicted in 
Eq. (16). 

 ( ) ( ( )) ( ) ( ( )) ( )c ct t t t kδ δ δ= +α A α α B α υ  (16) 

The matrices ( ( ))c tA α  and ( ( ))c tB α  are shown below in Eq. (17) and (18). 
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Where, the ku  is the mean argument of latitude of the chief orbit at the time of deputy satellite 
implementing impulse maneuver. ( )kδυ  represents the control input impulse vector including three 
directions of radical, tangential, and normal.  

For the implementation of MPC, the linear dynamics model should be discretized by being 
expressed as a function of the initial ROE vector, ( )kδα , and the impulse vector ( )kδυ , as shown in 
Eq. (20), which includes the state transition matrix ( )kΦ , convolution matrix ( )kΓ , depicted in Eq. (21) 
and Eq. (22). 

 ( ) ( ) ( ) ( ) ( )1k k k k kδ δ δ+ = +α Φ α Γ υ  (20) 

Without considering the J2 perturbance, the STM and convolution matrix related to the near-
circular linear motion model is depicted in Eq. (21) and Eq. (22) . 
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Where 0dt t t= − , that represents the duration time of the k  th step for the discretized model. 
1

2
k ku u

mu ++=  denotes the middle mean argument of latitude of the chief during deputy satellite 
implements maneuver from ku  to 1ku + , and 1k ku u u+∆ = − . ( )kδυ  represents the control input impulse 
vector at period of dt  including three directions of radical, tangential, and normal. It’s assumed that 
the control input is constant thrust during the one step from 0t  to t  for time and from ku  to 1ku +  for 
mean argument of latitude of the chief. If the u∆  is enough small, sin( )2

2 1u
u

∆
∆ =  in mathematics. It’s 

worth to note that J2 perturbance is not considered in this discrete dynamic equation, due to the so 
close baseline of FFLAS mission. 

3.3 Discrete Underactuated Control Subsystem for ROEs in orbital plane 

The propulsion subsystem in the satellite of FFLAS mission only offers the force in tangential 
direction and normal direction. Consequently, it is very vital that how to achieve the automatic control 
problem with the underactuated subsystem.  

The control model is decoupled system in orbital plane and normal direction according to the Eq. 
(20), which means that four relative orbital elements in plane of { }, , ,x ya e eδ δλ δ δ  are controlled by 

Rδυ  and Tδυ , two elements out of plane of xiδ  and yiδ  by Nδυ  respectively. Due to lack of Rδυ  and 
decoupled system, only the maintenance issue of four relative elements in plane is the one of most 
point of study, that is how to control this system via only the tangential impulse of Tδυ . The 
underactuated control system in the orbital plane is reconstructed in Eq.(23). 

 ( ) ( ) ( ) ( ) ( )1 Tk k k k kδ δ δυ+ = +α Φ α Γ 

 

 (23) 

 [ ]Tx ya e eδ δ δλ δ δ=α  (24) 
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Form the Eq. (23), The δλ  could not be directly control by the tangential force, only affected by 
the relative semi-axis of aδ  and indirectly controlled by the tangential thrust. Furthermore, the 
discrete dynamic model for MPC implement is reconstructed, shown in Eq. (27). This model reduces 
the dimension of system and would make it more efficient to execute in on broad.  

 ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )1 Tk k k k kδ δ δυ+ = +α Φ α Γ  (27) 

 [ ]ˆ x ya e eδ δ δ δ=α  (28) 

 ˆ ( , )0
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0 1 0
0 0 1

t t
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Φ  (29) 
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Γ  (30) 

Nonetheless, the element of δλ  in ROEs is neglected in system of Eq. (27). In order to 
guarantee the controllability for all of ROEs, the aδ  and δλ  are combined to one element to be 
controlled in this solution directly. This combined method is applied to obtain the control input using 
error equation in the above-mentioned MPC strategy, and the error equation applied is obtained via 
the reconstructed underactuated parameter, shown in Eq. (31) and Eq. (32).  

 ˆ ˆ( ) ( ) ( ) ( ) ( )0k k k k uδλδ δ∆= + − −ε α ε Ω α Θ  (31) 

 [ ]( )0 0 0 0 T
rKδλ δλ δλ∆ = −ε  (32) 

Where 0K  is the combined coefficient, 0 0K > , the rδλ  and 0δλ  are the ideal and actual relative 
mean longitude respectively. In this way, the error of relative mean longitude would be controlled by 
means of bringing it to the error problem of relative semi-major axis. The stability of the MPC method 
based on this system could be proved via classical Lyapunov function referring to the method in Ref 
[15]. Therefore, the aδ  is leaded to convergence to the required rigid formation, and the δλ  would be 
leaded to convergence simultaneously. As for the parameter choice of 0K , if the parameter is 
excessive, it will make the system too sensitive for the error of δλ  that states oscillation and 
consumption waste happens. Therefore, it’s critical to design a perfect parameter by numerical 
simulations. 

3.4 Discrete Control Subsystem Out of Plane 

Decoupled from the Eq. (20), the discrete model out of plane is yielded and shown in Eq. (33), 
which is very succinct in matrix dimensions and would make it more efficient that calculating the 
control law for the sake of the microcontroller by means of MPC. 

 ( ) ( ) ( ) ( ) ( )1 Nk k k k kδ δ δυ+ = +α Φ α Γ
 

   (33) 

 ( , )0
1 0
0 1

t t  
=  
 

Φ


 (34) 
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As mentioned above, the ideal trajectory of inclination vector is time-variant, furthermore it will 
cause poor control error, especially in condition of large sampling time. From the view of relative 
states in Cartesian frame, the relative state in normal direction is constant, which always requires a 
constant thrust to maintain it. Therefore, the constant thrust would be derived in Cartesian frame18[14] 
and regarded as the initial control input for the implementation of MPC. 

4. Simulation and Evaluation 

In this section, the disturbance form only caused by non-spherical gravity are introduced and 
obtained by simulating with the input of orbital elements of FFLAS. Subsequently, the scenario and 
results are presented to testify the advancement and performance of the approach proposed. 

4.1 Disturbance form 

Affected by the J2~J6 perturbance of non-spherical gravity, the disturbance of relative orbital 
elements would be in some forms. Without losing generality, the formation with the capability of 
nature maintenance for a period of time is used to determine the disturbance form, which are the 
formation of space circular orbit with the radius of 50m. The disturbance would be higher order of 
magnitude than the formation mission of FFLAS, therefore the effective and capability of the method 
presented would be proved in the presence of external disturbance. 

The orbit of chief satellite is identical with the mean orbit elements of virtual center of FFLAS 
mission, with the initial mean argument of latitude of zero, And the deputy satellite flies around the 
chief with the radius of 50m, using the method designed in Ref [16] to get the relative states and 
relative orbital elements. These output states of position and velocity obtained via numerical 
integration of RKF7(8) and propagation model [17] are used to determining each satellite’s orbital 
elements in the inertial J2000 reference frame, after a chain of transformations comprising the 
nonlinear relationships between Cartesian states with Kepler orbital elements, and the conversations 
from osculating to mean elements, proposed in Ref [18]. During numerical integration, the 
atmosphere drag perturbation is neglected, for the reason of less difference in altitude of orbit and 
drag area. 

The disturbance form in relative orbital elements is gained via the cftool of MATLAB, seen as Eq. 
(36). Conveniently, the emphasis of matching the curve is put on the magnitude, frequency and initial 
phase of sin forms. Then it would affect the next simulation scenario to demonstrate the automatic 
control approach proposed. 
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 (36) 

Where, n  is the mean angular velocity of the chief satellite. Incidentally, the disturbance 
extracted is utilized to demonstrate the proposed MPC method via a relatively simple approach. In 
Ref[1], Orekit was linked to offer the estimated states to prove the presented strategy including the 
perturbances, which would be perfect and complicated. 

4.2 Simulation and Result Analysis in Orbital Plane 

Based upon the previously described FFLAS mission, the rigid formation has been defined and 
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are used to demonstrate the method by means of MPC strategy proposed. All the relative orbital 
elements and relative position are revealed in section 2, and the simulating duration is designed 10 
orbital period of the chief satellite flying in the altitude of 775km. The error of control, consumption and 
control input are contrasted and analyzed with the actuated propulsive system, the constraint solution 
for this underactuated system using the quadratic programming (QP) and proposed underactuated 
model. 

As for the basic parameters of MPC, the sampling time should be small enough to be able to 
produce a continuous force and approximate on-line in-orbit requirements but also long enough to 
reduce the predictive and control horizons to a number of steps computationally feasible within the 
on-board hardware. To demonstrate the proposed approach and study the relationship and the 
performance of the different combined coefficients, in term of consumption and accuracy in 
simulations, a total of six scenarios are utilized to analyze that, which incorporates actuated model, 
the way using the quadprog function to solve this constraint problems of lack of radial force, and the 
underactuated model with different parameters. Generally, the second method are frequently used to 
solve various of constraint problems, but more computational workload is required. All parameters 
have been presented in Table 1, which would be analyzed by following simulations. 

Table 1 - Parameter value for formation maintenance in plane 

Parameters Value 

Basic Parameters 
Sampling time 16 s 

Predictive Horizon steps 32 
Control Horizon steps 16 

Actuated Thrust output weight [1, 1] 
States divergence weight [1, 1, 1, 1] 

QP Thrust output weight [1, 1] 
States divergence weight [1, 100, 1, 1] 

Underactuated 
Thrust output weight 1 

States divergence weight [1, 1, 1] 
Combined coefficient 0K  50, 75, 100, 125 

Firstly, the formation maintenance in plane is demonstrated due to the decouple dynamic motion. 
The result of the comparison of control accuracy between the actuated and underactuated model with 
the 0 50K =  is shown in Figure 4. It shows the control error by means of MPC using the actuated and 
unactuated model. The magenta line represents the error under underactuated model, which means 
just only control thrust in the tangential direction. And the cyan line donates the error under actuated 
model using the control force in radial and tangential direction for maintenance the formation in plane. 
From the error result of the two way of control models, it is obvious to find that the error of the relative 
mean longitude using the unactuated model is much more exceptional than the actuated model, and 
the error range of the relative mean semi-major axis is comparable with another one. Inversely, the 
error range of the relative eccentricity vector using the unactuated model is twice as lager as another 
one. 
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Figure 4 - The control accuracy comparison between underactuated and actuated approach.  

Figure 5 represents the result of the comparison of control accuracy between the QP method and 
underactuated model. The magenta line represents the error under QP method, and the cyan line 
donates the error under underactuated model with the combined coefficient of 0 50K = . From this 
figure, it is easy to find that the error of the relative mean longitude using the unactuated model is still 
more remarkable than the QP method, but the rest of errors are like the result of QP method. All error 
results of the evolution using underactuated model with the different combined coefficient is depicted 
in Figure 6. Unexpectedly, it’s found that the error of ROEs in plane are identical, except the relative 
mean longitude. The error boundary of relative mean longitude is smaller in condition of the bigger 
combined coefficient. 

 

Figure 5 - The control accuracy comparison between underactuated and QR approach.  
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Figure 6 - The control accuracy comparison using the underactuated approach with four parameters.  

During the formation maintenance for 10 orbital periods, the consumptions of thrust input for 
keeping the relative elements in plane referring to ideal trajectory with mentioned approaches are 
revealed in Figure 7. From this figure, all consumptions of four combined coefficients are little 
difference, and the consumption increases with the increasement of combined coefficient. Generally, 
the consumption of thrust input using the underactuated model is a little more than the actuated 
model, around 17~21% higher than the latter. The consumption of QP method is also a little more 
than the actuated model, just around 3.4% higher than the actuated model. Additionally, all the total 
consumptions for maintenance are very low, and less than 48 10−×  m/s, for the reason of the close 
formation and excellent performance of MPC. Nevertheless, comparing the difference in mass caused 
by the thrusters in radial direction, the mass of extra consumption of rigid formation maintenance by 
unactuated model is negligible. 

 

Figure 7 - The control consumption comparison in six cases.  

Figure 8 shows the control inputs of all methods for the rigid formation maintenance, the input in 
radial and tangential direction using the actuated model, and the input in tangential direction using the 
underactuated model with different parameters and using QP method, it’s worth to note that the input 
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is in form of impulsive due to the sampling time of 16 sec and it is regarded as constant continuous 
force during one sampling time in the discrete model. Most of time, the magnitudes of all kinds of 
input are less than 44 10−×  m/s for 10 orbit periods. As a whole, the control input of all the method 
with underactuated system are equivalent to each other, whatever the magnitude and the overall form 
of input curve. Indeed, all the tangential inputs with underactuated system is more regular in contrast 
to the actuated one.  

 

Figure 8 - The control inputs of six cases.  

In contrast, the control inputs of underactuated models in incipient period are remarkable different 
with the QP method. To reveal the detail, all the inputs of first 20 sampling time are depicted in Figure 
9, what should be noticed is that the larger combined coefficient causes the more obvious vibration, 
especially in the curve line of 0 125K = . However, the control input obtained via QP method is enough 
smooth and stable, maybe this is the advantage of QP method. Finally, all the inputs via 
underactuated with the different parameters would become smooth and stable to match the external 
disturbance.  

 

Figure 9 - The control inputs of the first 20 sampling time using the underactuated system.  

In some literatures, the underactuated system is achieved through the inequation constraints and 
quadratic programming to solve the quadratic programming problem, which requires plenty of 
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calculation to search the best control input to satisfy the demand of prioritization. This paper also 
presents this method to solve the underactuated problem and completes some comparisons and 
analysis between this method and proposed approach. According to those simulations and result, all 
conclusions could indicate that the proposed method has the wonderful performance for the formation 
maintenance. Unlike the orbital transfer, the magnitude of the thrust, which this rigid formation 
maintenance needs, is less than the magnitude provided by the thrusters. Only are the radial input 
zero as the constraint, that need to use the quadratic programming, which would have the 
disadvantage in term of computation speed, especially in so close formation. 

4.3 Simulation and Result Analysis out of Plane 

Based on the previously described FFLAS mission, the rigid formation causes the relative 
inclination vector is time-variant, which is very crucial for this mission, due to continuous control input 
in normal direction. The basic parameters of MPC and simulating duration are same as the previously 
mentioned, represented in Table 2. 

Table 2 - Parameter value for formation maintenance out of plane 

Parameters Value 
Sampling time 16 s 

Predictive Horizon steps 32 
Control Horizon steps 16 
Thrust output weight [1] 

States divergence weight [1, 1] 

The control accuracy is shown in Figure 10. From that, the error of c xa iδ  is within the boundary of 
42 10−± ×  m and the error of c ya iδ  is within the boundary of 41 10−± ×  m. Figure 11 depicts the control 

input data in this simulation. The input of control impulse changes in the range from . 59 4075 10−×  to 
. 59 41 10−×  m/s during one sampling of 16 sec, to match the time-invariant inclination vector in rigid 

formation and the external disturbance. And the total impulse of consumption is 0.3541 m/s, which 
means that it would cost 0.0354 m/s per orbital period. The wonderful performance of the MPC 
implement is demonstrated in the simulation. 

 

Figure 10 - The control accuracy of inclination vector using the MPC algorithm 
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Figure 11 - The control input using the MPC algorithm 

5. Conclusion 

This paper proposes MPC as a suitable control strategy for FFLAS mission in LEO with 
underactuated propulsive system. In this paper, the direct algorithm of MPC is introduced for the time-
invariant system based on ROEs, neglecting the J2 perturbation in dynamic model and constraints in 
MPC solution after analysis. Subsequent, the underactuated system in the orbital plane is 
reconstructed by combining the aδ  and δλ  to one element to be controlled in MPC by means of 
introducing a combined coefficient, while the error estimation method is proposed according to the 
reconstructed control system. To demonstrate the proposed approach, various of simulations are 
completed and the effects of the underactuated system and actuated system are compared in term of 
control accuracy, fuel consumption and control input, including the classical solution to solve 
constraint problems using MPC method and quadratic programming. As for out of plane, high 
precision control is revealed. The introduced approach demonstrates encouraging results, shows a 
remarkable performance compared with actuated propulsive system and the classical solution, and is 
operationally applicable in terms of computational expenses. In future, the performance of this method 
will be verified in the presence of practical engineering problems, such as the state determination 
noise. 
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