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Abstract

Composite materials are nowadays widely used in the aerospace sector both for primary and secondary struc-
tures for their high mechanical properties and the ability to model them according to project needs. Therefore,
accurately predicting material behaviour when subjected to operating loads is extremely important in making
the design process more efficient. For this purpose, computational approaches based on continuum damage
mechanics have been largely used to study the progressive loss of material integrity due to the propagation
and coalescence of microscopic defects.
In this contribution, a recently developed hybrid computational technique, which combines the Virtual Element
Method (VEM) with the well-known Boundary Element Method (BEM), is employed to study unidirectional fibre-
reinforced composite material’s transverse behaviour in the presence of inclusions with complex geometries.
BEM is used to model the stiffer inclusion phase, which is considered a linear elastic material and maintains
its pristine state. VEM is adopted to study the softer matrix phase, using VEM’s peculiar feature, which can
simulate general nonlinear phenomena with a straightforward implementation like that of the standard FEM
one. An application of the hybrid formulation mentioned above is presented to simulate damage onset and
propagation in the matrix phase of the transverse section of a composite unite cell. Numerical results are
discussed and compared with known results available in the relevant literature.

Keywords: Fibre-reinforced Composite Materials; Computational Micro-mechanics; Computational Homoge-
nization; Virtual Element Method; Boundary Element Method

1. Introduction
The analysis and design of novel materials for different structural applications is frequently driven by
the capacity to engineer their microstructure by proper coupling of different phases whose interac-
tion is optimized to obtain desired properties at the scale of the considered application. Within this
framework, computational micro-mechanics plays a significant role.
This contribution describes the application of a recently developed numerical technique [1, 2, 3] cou-
pling the Virtual Element Method (VEM) with the Boundary Element Method (BEM) for the analysis
of heterogeneous materials with damage.
VEM [4] extends the peculiarities of FEM to very general polygonal and polyhedral mesh elements,
including irregular or non-convex elements as well as elements featuring curved boundaries. For
such a reason, VEM provides a powerful, flexible tool for computational micro-mechanics problems,
which frequently feature phases with complex geometries that may also show non-linear constitutive
responses [5, 6, 7].
BEM [8, 9] is a numerical technique widely employed for the solution of several classes of problems in
solids and materials mechanics, including computational homogenization of materials with complex
morphology or constitutive behavior [10, 11, 12, 13, 14, 15, 16]. Based on a boundary integral
reformulation of the considered problem, BEM enables decreasing the analysis dimensionality, e.g.
from volumes to surfaces, resulting in substantial simplification of the pre-processing stage and in the
reduction of the number of degrees of freedom, without penalties on the solution accuracy.



A HYBRID VEM/BEM TECHNIQUE FOR SIMULATING DAMAGE IN COMPOSITE MATERIALS

Figure 1 – A sample VEM/BEM analysis domain: geometry (left) and mesh (right).

This contribution is organized as follows: Section 2.provides a brief overview of the employed formu-
lation; Section 3.reports an application to a fibre-reinforced composite material developing damage in
the matrix phase.

2. Formulation
The multi-region two-dimensional domain Ω⊂ℜ2 with external boundary Γ, shown in Fig. 1, is consid-
ered in this study. It is assumed that no body forces act within Ω, but either displacements or tractions
can be enforced on the boundary Γ. The problem domain Ω is the union of two sub-domains, namely
ΩB and ΩV, which represent, respectively, the transverse section of a fibre and the surrounding poly-
mer matrix in a polymer fibre-reinforced composite. The two sub-domains share the interface S ≡ ΓB.
BEM is used to model the fibre inclusion, which is supposed to behave within the linear elastic range.
VEM is used to model the surrounding matrix, developing more complex non-linear behaviours, of-
fering the advantage of extended flexibility in terms of element topology and shapes. VEM ensures
convergence and accuracy for highly distorted meshes and even non-convex elements, considered
pathological and problematic in standard FEM analyses. Such a characteristic relieves the qual-
ity requirements for the employed meshes, thus reducing the need for mesh consistency checks in
the pre-processing stage of the analysis, which may prove highly beneficial when a large number
of morphologies have to be generated and analysed, as often the case in computational micro-
mechanics [6].
For the analysis, ΩV is partitioned into several polygons of general shape, while the boundary S ≡ ΓB

is divided into several straight segments, which form the edges of the polygonal elements in ΩV lying
in the proximity of the interface between the two sub-domains, see Fig. 1. Further details on the
adopted meshing procedures and related convergence analyses can be found in Ref. [3].

2.1 Boundary Element modeling of the inclusion
For the sub-domain ΩB with smooth boundary S = ΓB, if no body forces are applied, the boundary
integral equation (BIE) for the displacements components u j at a boundary collocation point x0 ∈ S
can be written, using tensor notation with i, j = x,y, as in Ref. [8].

1
2

u j (x0) =
∫

S
Gi j (x0,x) t j (x)ds−

∫
S

Hi j (x0,x) u j (x)ds (1)

where ui(x) and ti(x) are the displacement and traction components at the integration boundary point
x, Gi j(x0,x) and Hi j(x0,x) are, respectively, the components of the two-dimensional elasto-static fun-
damental solution for displacements and tractions under plane strain assumptions. The numerical
treatment of the boundary integral formulation expressed by Eq. (1) is based on the subdivision of
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the boundary S into a collection of m straight elements ∆Sk and a convenient approximation of the
boundary displacement and traction components in terms of shape functions and nodal values. A
linear approximation of displacements and tractions over each boundary element

u(ξ ) = N(ξ ) uk, t(ξ ) = N(ξ ) tk (2)

is assumed, where N(ξ ) ∈ R2×4 is the matrix collecting one.dimensional linear shape functions for
the boundary segment ∆Sk, expressed as function of the natural coordinate ξ , and uk, tk ∈ R4×1 col-
lect, respectively, nodal components of displacements and tractions associated with the boundary
segment ∆Sk. This approach assures a straightforward treatment of the interface conditions between
the boundary element and the VEM elements used to model the contiguous matrix.
Using the procedures described, e.g., in Ref. [9], Eq. (1) can be numerically integrated. Such numer-
ical integration, repeated for Eq. (1) written for the set of all the collocation points chosen along the
boundary S, leads to the global system of linear algebraic equations

HUB = GTB (3)

where the vectors UB,TB ∈ R2m×1 collect the components of displacements and tractions of all collo-
cation nodes identified along the boundary S and H,G ∈R2m×2m collect the coefficients obtained from
the numerical integration of Eq. (1) associated to such collocation points. Since the BEM domain
identifies an inclusion in the analyzed domain, both UB and TB are unknown quantities that must be
determined from the analysis.

2.2 Virtual Element modeling of the matrix
A lowest-order VEM formulation is employed to model the domain ΩV.
For a general polygonal element E, the element degrees of freedom are the values of the displace-
ments components at each of its n vertex, which are collected into the vector uE . Analogously to the
standard FEM, the displacements field u is expressed as

u = N(ξ ,η) uE (4)

where N(ξ ,η) is the matrix containing the virtual shape functions Nv (ξ ,η) associated with each
vertex v. Differently from standard FEM however, such shape functions are known only on the ele-
ment edges of E, where they are globally continuous linear polynomials. Since the shape functions
Nv (ξ ,η) are not explicitly known within the polygonal element, an explicit expression for the strains is
not available. An approximated constant strain field εΠ is assumed within each element, which can
be computed from the degrees of freedom uE as

εΠ = ΠE uE (5)

where ΠE ∈ R3×2n is the matrix representation of a projection operator defined as [17]

ΠE =
1

AE

n

∑
v=1

∫
ev

NE
v N(η) ds, NE

v =

[
nx 0 ny

0 ny nx

]T

(6)

where AE is the area of the polygonal element E, bounded by its n edges ev and NE
v is the matrix

containing the components nx and ny of the outward unit normal vector over each edge. Since the
restriction of the virtual shape functions Nv to such edges are known piece-wise linear polynomials,
the integrals appearing at the right-hand side of Eq. (6) are exactly computable.
The VEM stiffness matrix KE for a general polygonal element E is given by the sum of two terms

KE = Kc
E +Ks

E (7)

The consistency contribution is given by

Kc
E = AE Π

T
E C0

ΠE (8)
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where C0 is the material stiffness tensor in Voigt notation. Ks
E is a stabilization term whose presence is

motivated by the need to avoid zero-energy modes not associated with rigid body motion, which may
arise as a consequence of the fact that the approximate strains εΠ are assumed constant within the
element, while the displacements u are piece-wise linear on the element edges, which in general may
induce incompatibility between εΠ and the nodal degrees of freedom uE . Details of the computation
of such term can be found in Ref. [4].
The equivalent nodal forces FE are computed as in the standard FEM from specified tractions t̄ over
the element boundary ∂E =

⋃
ev, i.e.

FE =
∫

∂E
NT(ξ ,η) t̄ds (9)

Once the elemental stiffness matrices and load vectors are built, the assembly of the VEM global
matrices and vectors can be performed following the standard FE procedures, to obtain the following
sets of equations for the VEM sub-domain

KV UV = FV (10)

where KV, UV and FV are, respectively, the stiffness matrix, the nodal displacement vector and the
force vector, with the superscript V introduced to identify quantities related with the VEM domain.

2.2.1 Modeling damage with Virtual Elements
The Virtual Element formulation can be extended to problems involving nonlinear material behav-
iors [18, 19]. An isotropic damage model [20, 21, 22, 23] is chosen to model the matrix phase of the
composite material. Consequently, the loss of material integrity is caused by an equal degradation of
the bulk and shear moduli, and it is governed by a single internal scalar damage variable ω, which
tracks and measures the loss of stiffness of the material. Damage evolves monotonically within its
admissible range 0 ≤ ω ≤ 1, where 0 is associated with the pristine state and 1 with the fully degraded
material. The constitutive equations for an isotropic damage model are defined as

σ = (1−ω)C0
εΠ (11)

where σ and εΠ collect the Voigt components of the stress and strain respectively, and C0 is the
elasticity matrix for the pristine elastic material. Damage evolution is triggered upon fulfillment of the
condition

F (ε) = τ (ε)− r = 0, r = max
λ∈H

{τ(λ )} (12)

where τ (ε) is a suitably chosen norm of the strains, used to determine if the considered stress
state belongs to the elastic domain, when F (ε) < 0, or if it induces damage initiation or evolution,
F (ε) = 0. The monotonically increasing internal variable r represents the damage threshold at the
current loading step λ and it is a function of the loading history H . To model the onset and evolution
of damage in epoxy resins, often used as the matrix material in fibre-reinforced composites, Melro et
al. [24] proposed an expression which reads

τ (ε) =
3J̃2

Xc
mX t

m
+

Ĩ1(Xc
m −X t

m)

Xc
mX t

m
, (13)

where X t
m and Xc

m are, respectively, the tensile and compressive strengths of the epoxy resin. Ĩ1
and J̃2 are, respectively, the first stress invariant and the second deviatoric stress invariant, both
defined using the components of the effective stress σ̃ = C0 εΠ acting in the undamaged material.
The evolution of damage is governed by the Kuhn-Tucker flow rules, which read

F ≤ 0, ṙ ≥ 0, ṙ F = 0, (14)

and allow to distinguish between loading and unloading conditions. Unloading occurs when τ̇ ≤ 0;
otherwise, damage evolves and the following consistency condition must be satisfied

Ḟ = τ̇ − ṙ = 0. (15)
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The exponential softening damage evolution law defined as in Ref. [25] as

ω(r) =
[

1− r0

r
exp

(
− r− r0

r f − r0

)]
·H (r− r0) , r = max

λ∈H
{τ(λ )} (16)

is adopted to model the evolution of the damage ω after its onset. H (·) denotes the Heaviside step
function, the parameter r0 identifies the damage initiation condition and r f specifies the softening
response behavior.
The nonlinear constitutive laws appearing in Eq. (11) can be treated, as in nonlinear finite element
formulations, using standard incremental-iterative algorithms. The stress at a generic point x and at
a generic loading step λ is given by the expression

σ = σ(λ ,x,εΠ,H ), (17)

where εΠ is the approximated virtual strain computed as in Eq. (5), using the matrix projector operator
Π and H contains the history variables of the damage model. The tangent material stiffness matrix
Ctan at a certain time t is consistently computed from the constitutive law in Eq. (17) as

Ctan(t,x,εΠ,H ) =
∂σ

∂εΠ

. (18)

2.3 Procedure to couple BEM and VEM subdomains
Coupling between BEM and VEM subdomains is achieved according to the approach described in
Ref. [3]. The BEM subdomain is treated as a macro-finite element, and the traction-displacement
equations associated with it are transformed into force-displacement equations and assembled with
the VEM equations, already expressed in terms of nodal forces and displacements.
The vectors UV and FV appearing in Eq. (10) collect the displacement and nodal force components
of all the nodes in the VEM domain. It is possible to partition the vectors as

UV =

[
UV

S

UV
D

]
, FV =

[
FV

S

FV
D

]
, (19)

where UV
S and FV

S identify components related to nodes belonging to the interface S. Along S, the
nodal displacements and forces must satisfy the compatibility and equilibrium conditions

UB = UV
S , FB +FV

S = 0, (20)

which have been written considering that no external nodal forces act on the nodes belonging to S.
The displacement compatibility equations can be readily written, as the same displacement compo-
nents appear in both the BEM and VEM equations. Contrarily, while nodal forces appear in Eq. (10),
related to the VEM domain, tractions appear in Eq. (3), related to the BEM domain, so that it is nec-
essary to retrieve consistent nodal forces from BEM tractions before writing the equilibrium equations
appearing in Eq. (20). This may be done by resorting to appropriate energetic considerations, which
allow associating a system of equivalent nodal forces FB with the tractions acting over the considered
boundary elements leading to

FB = MTB, (21)

where FB,TB ∈ R2m×1 and M ∈ R2m×2m, being m the total number of boundary nodes/elements, see
Refs.1-2 for details. From Eq. (3), it follows TB = G−1 HUB, so that Eq. (21) can be rewritten as the
following force-displacement equilibrium equation

FB = MTB =
(
MG−1 H

)
UB = KB UB. (22)

Eq. (10), related to the VEM sub-domain, can be conveniently rewritten as[
KV

SS KV
SD

KV
DS KV

DD

][
UV

S

UV
D

]
=

[
FV

S

FV
D

]
, (23)

and it may be eventually combined with the interface conditions in Eq. (20), with Eq. (22) and with
suitable external boundary conditions to obtain the problem solution.
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3. Numerical experiment
An application of the hybrid virtual-boundary element formulation, combined with an isotropic damage
model for the regions modelled with virtual elements, is reported in this Section.
Fig. 2 shows the model’s geometry and boundary conditions: a unit cell comprising a single fibre
embedded in an epoxy matrix, with initial partial debonding between fibre and matrix along the region
of the interface identified by |θd | ≤ 70◦. Outside the debonded region, the inclusion is perfectly bonded
to the matrix. The study of this fibre-matrix system has been treated extensively [26, 27, 28].
The present test aims at simulating the progression into the matrix of the two kinked cracks that start
from both ends of the debonded zone. It is worth noting that, in this specific application, the coupling
procedure detailed in Section 2.3is applied only over the pristine region of the matrix-fibre interface.
The debonded regions require zero traction conditions over the edges of the BEM fibre domain and
zero nodal equivalent forces over the nodes at the edge of the VEM matrix domain.
The side length of the unit cell is L = 0.2mm and the fibre diameter is D = 0.025mm. The centre
of the circle coincides with the centre of the square. The tensile loading is applied by prescribing
uniform displacements ū at the sample left and right edges. Plane strain conditions are assumed.
The fibre material is assumed linear elastic, and it does not develop damage. The matrix material
is treated as linear elastic until the damage onset, governed by the loading function in Eq. (13).
The exponential damage evolution law in Eq. (16) is assumed, with r0 = 1, r f = 234, according to
strength and fracture toughness data about epoxy. The transverse elastic material parameters are
EF = 201GPa and νF = 0.22 for the fibre and EM = 2.8GPa and νM = 0.33 for the matrix. The fracture
toughness of the epoxy matrix is G f r = 0.09N/mm.
A integral-type non local regularization approach [29, 30] is employed, which consists in replacing
the local value of the equivalent strain τ(xp) at a certain point xp with its weighted average τ̄(xp) over
a representative circular domain surrounding each material point xp

τ̄(xp) =
∫

Ω

α(xp,xq)τ(xq)dΩ, (24)

where Ω is the analysis domain and α(xp,xq) is a nonlocal weight function chosen as

α(xp,xq) =
α0 (r)∫

Ω
α0 (r)dΩ

, (25)

where α0 (r) is a non-negative function of the distance r = ||xp − xq|| between two considered ma-
terial points, monotonically decreasing for r ≥ 0. The expression adopted for α0 (r) is the truncated
quadratic polynomial function

α0 (r) =
〈

1− r2

R2

〉2

, (26)

where R is known as the interaction radius and it is a parameter related to the characteristic length lc.
In this test, a value of R = D/3 has been used.
8047 lowest-order virtual polygon elements are used to mesh the matrix region, and consequently,
256 one-dimensional linear boundary elements on the fibre-matrix interface. The simulation is per-
formed under displacement control using a Newton-Raphson with adaptive load step to track the
steep softening branch. The simulation is arrested at a nominal macro-strain εx = 0.05.
Fig. 3 shows the load-displacement diagram: for each load increment, the plotted reaction force is
computed as the sum of the nodal reaction forces on the right edge. The identified labels correspond
to the damage profiles shown in Fig. 4. Linear elastic behaviour is exhibited up to slightly before point
(a) in the curve, which marks damage initiation at the ends of the debonded interface, where stress
concentration is expected. Once the damage is activated, the two symmetric damaged/failed regions
progress within the matrix, following a kinked path consistent with the previously cited references’
behaviour. As the load increases, the material failure evolves, affecting regions oriented perpendic-
ularly to the load direction up to the domain boundary, which causes a progressive decrease of the
load-carrying capability identified by the softening branch of the load-displacement diagram.
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Figure 2 – Geometry and boundary conditions of the composite unit cell containing a circular fibre
partially debonded from the matrix.

Figure 3 – Force-displacement diagram for the composite unit cell test.
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Figure 4 – Evolution of the damage profile for the composite unit cell test.
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