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Abstract

A novel machine learning method known as Physics-Informed Neural Netwworks (PINNs) is presented in
this work for the analysis of lightweight structures. The training process is performed employing a recently
developed learning algorithm referred as Extreme Learning Machine (ELM). This framework is first applied as a
collocation method for solving numerically the linear static, buckling and free vibration problems of a composite
plate with a hole. A second application is then presented for a wing box structure where the neural network
is enriched with data from the system under analysis. The comparison of results against Finite Element (FE)
simulations demonstrates the effectiveness of the proposed approach.
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1. Introduction
The design process of aeronautical structures requires several analyses to be conducted to perform
preliminary optimizations or parametric studies. Metamodelling techniques have been proposed as
a viable mean to accomplish these tasks, while alleviating the whole computational burden [1]. An
interesting example is given by the use of Artificial Neural Networks (ANNs) for designing structures
operating in the nonlinear postbuckling regime, see [2]. When dealing with metamodels, one crucial
aspect regards the availability of data for the training process. As a matter of fact, the time for
generating training points via numerical simulations can be high, and this is even more amplified
when they are produced via experiments. For this reason, any strategy which can reduce the amount
of data required for training is of interest, while keeping in mind that any shortage of them may lead to
poor generalization performances and learning difficulties of the metamodel. In this context, Physics-
Informed Neural Networks (PINNs) [3] represent an emerging class of ANNs capable of integrating
the often-limited training dataset with supplementary points, or collocation points, which bear the
physics information of the problem under investigation and are not associated with any simulations
or experiments. This additional knowledge is embedded in the loss function defined for the training
process and can be in the form of any physical law or empirical relation.
The present work proposes a metamodelling technique based on PINNs combined with a novel
learning algorithm, known as Extreme Learning Machine (ELM) [4], with application to the structural
analysis of lightweight structures. The underlying physical laws governing the problem – in this case
consisting of the equilibrium equations – are plugged into the loss function to enrich the information
provided by the available training dataset. As compared with existing training strategies which rely
on Gradient-based Learning (GBL) algorithms [5] and iteratively minimize the loss function for tuning
the weights and biases of the network, ELM allows to perform this process in a single step by solving
a least-square problem. This feature leads to improved training time, which can be several orders of
magnitudes smaller with respect to the traditional approach.



Analysis of Lightweight Structures using Physics Informed Neural Networks

2. Problem formulation
In this work, the physical information adopted for informing the PINNs are in the form of physical
laws represented by partial differential equations (PDEs) and boundary conditions. These governing
equations express the equilibrium conditions of an elastic plate and are derived in the context of the
Kirchhoff thin plate theory [6]:

Rx(u,x) = 0, x ∈Ω

Bx(u,x) = 0, x ∈ ∂Ω (1)

where Rx and Bx are two differential operators in x = [x,y]T, while u = [u,v,w]T is the vector collecting
the middle-plane displacement components of the plate along the two in-plane directions, x and y,
and thickness direction, respectively.
The PINNs are applied here for solving three different class of problems, i.e. linear static, free vi-
bration and buckling problems. Accordingly, the residual function Rx can be expressed as follow:

Rx(u,x) := Kx(u,x)−β2ω
2Mx(u,x)+β3λGx(u,x)+β1q(x) = 0 (2)

where Kx, Mx and Gx are the differential operators defining the stiffness and mass properties, and
the prebuckling state of the system, while ω is the vibration frequency, λ the buckling multiplier, and
q = [qx,qy,qz]

T the vector of external loads. The quantities [β1,β2,β3]
T are equal to 1 or 0 according to

the problem of interest.
More complex structures can be obtained by assembling simple plate elements. In this case, the
governing equations can be written as:{

R(p)
x (u,x) = 0 in Ω(p)

B(p)
x (u,x) = 0 in ∂Ω(p)

for p = 1...P{
C(q)

x (u,x) = 0

E(q)
x (u,x) = 0

in ∂Ω
(q)
int for q = 1...Q (3)

where P is the total number of plate elements, Q the number of interfaces between elements, while
C(q)

x and E(q)
x are differential operators which impose compatibility and the equilibrium conditions at

the interfaces ∂Ω
(q)
int .

3. Methodology
3.1 Physics-Informed Neural Network
Artificial Neural Networks are commonly used as black-box approach, where the learning process
is entrusted entirely on given sets of input/output data [xi,ui∗] which are extracted from the physical
process under analysis. Due to the high cost of data acquisition in many engineering applications,
training ANNs in a small data regime is a situation typically encounted in real-life problems. Often the
generalization performances of the ANN are poor, and solutions can be not physical.
Physics-Informed Neural Networks are ANNs whose training process is enhanced and optimized
with some prior knowledge of the problem under investigation [3]. This prior knowledge can be in
the form of some generally accepted physical laws which are descriptive of the phenomenon under
investigation and are not exploited in standard black-box ANNs. The training process of PINNs is
performed by considering a loss function L = Ldata +Lphysics in which the information content of
available input/output data is enriched with the physical understanding of the problem.
The data-driven part of the loss function can be defined as the mean square error:

Ldata =
Ndata

∑
i=1

|ui−ui∗|2

2Ndata
(4)

where Ndata is the number of available data, ui is the network output prediction for the i-th input data
xi, whereas ui∗ is the corresponding desired output.
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For the problems considered here, the physics-based contribution can be expressed referring to
Eq. (3) as follow:

Lphysics =
P

∑
p=1

N(p)
f

∑
i=1

|R(p)
x (ui,xi)|2

2N(p)
f

+
N(p)

b

∑
j=1

|B(p)
x (ui,xi)|2

2N(p)
b

+
Q

∑
q=1

N(q)
int

∑
k=1

|C(q)
x (uk,xk)|2

2N(q)
int

+
N(q)

int

∑
k=1

|E(q)
x (uk,xk)|2

2N(q)
int

 (5)

with Nf, Nb and Nint specifying the number of additional points, i.e. collocation points, which impose
the equations in the domain, at the boundaries and interfaces, respectively.

3.2 Training via Extreme Learning Machine
The training process is carried out through the minimization of the cost function L in terms of the
internal parameters of the network, i.e. weights and biases. Extreme Learning Machine (ELM) is a
fast learning algorithm for training ANNs [4] which can be used as an alternative to Gradient-Based
Learning (GBL) approaches [5].
Considering a single-hidden-layer neural network, its output is represented by:

ui =
Nn

∑
n=1

cnσ(wnxi +bn) (6)

where Nn the number of hidden neurons, cn are the output weights, σ is the activation function for the
hidden layer, wn is the vector of internal weights connecting the inputs with the n-th hidden neuron,
bn is the corresponding bias.
The ELM trains only the outer layer weights whereas the other internal parameters of the network are
chosen randomly. The training process is then performed in a single step through the solution of a
least-square problem in the form of:

Lc = t (7)

where c is the vector collecting the output weights, while L and t are obtained upon substitution
of Eq. (6) in the expression of L and imposing the stationary condition, i.e. ∂L /∂cn = 0 for n =
1, ...Nn. As opposed to GBL approaches, extremely high learning speed can be achieved due to the
absence of any iterative process. These gains in computational time are obtained without affecting
the generalization performances of the network [4].

4. RESULTS
In this section, the PINN-ELM framework is applied for the analysis of lightweight structures. Two
examples are illustrated. Firstly, PINNs are adopted as a collocation method for the numerical solution
of the PDEs given in Eq. (1). Secondly, they are presented as a hybrid metamodeling technique which
makes use of both raw input/output data and physical knowledge of the problem.
In the first application, the loss function considered is L =Lphysics. In this case, the training process is
solely based on physical laws which are assumed to be exact and fully representative of the physical
process under analysis. For this reason, the PINN can be seen as a white-box approach which is in
contrast with the traditional black-box use of ANNs for which L = Ldata.
In the second example, the training process is carried out based on the following loss function L =
Ldata +Lphysics. In this latter case, the physical laws are assumed to be partially known, or available
in an approximate way, and are used in conjunction with some data extracted from the system itself.
Due to the heterogenity of information provided during the learning process, the PINN can be viewed
now as a grey-box approach.

4.1 Flat plate with cutout
As first illustrative example, a flat composite plate with cutout is considered. The planar dimentions
are taken as a= 200 mm and b= 100 mm, while the radius of the circular cutout is r = 25 mm. The ma-
terial properties are: E11 = 138000 MPa, E22 = 8960 MPa, G12 = 7100 MPa, ν12 = 0.3 and ρ = 1.5×10−9

kg/mm3. Two different lamination sequences are considered: a quasi-isotropic laminate [±45/0/90]2s

and a cross-ply laminate [0/90/0/90]2s. The ply thickness is t = 0.1 mm.

3
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Three different types of analysis are carried out: linear static, buckling and free vibration analysis.
For the linear static analysis, a uniform compressive load Nxx = 1 N/mm is applied at the short edges
of the plate. Due to the symmetry of the problem, only a quarter of the plate is analyzed. For the
other two problems, the four edges of the quarter-plate are simply supported.
The neural networks share the same the shallow architecture illustrated in Figure 1. In all cases,
approximately Nphysics = Nf +Nb = 1000 collocation points and Nn = 600 hidden neurons are consid-
ered for the training procedure, while hyperbolic tangent is adopted as the activation function in the
hidden layer. The results are compared with Finite Element (FE) simulations and are summarized

Figure 1 – Neural Network architecture.

in Table 1 in terms of maximum force resultant Nmax
xx , critical buckling coefficient λ1 and fundamental

natural frequency f1. Close agreement is observed between PINN and FE method with maximum
percentage errors of E%[Nmax

xx ] = 3.92%, E%[λ1] = 5.12% and E%[ f1] = 2.50%. To give further proof of

Nmax
xx [N/mm] λ1 [-] f1 [Hz]

PINN FE E% PINN FE E% PINN FE E%

[±45/0/90]2s -4.24 -4.08 3.92 184.4 184.7 0.16 2119.0 2102.5 1.34
[0/90/0/90]2s -5.13 -5.30 3.20 164.0 156.0 5.12 2040.8 1991.0 2.50

Table 1 – Comparison between PINN and FE method for the linear static, buckling and free vibration
solutions.

the effectiveness of the present method as PDEs solver, the contour plots of the resultant Nxx, the
first buckling and vibration modes are presented in Figure 2. Even in this case, the accuracy of PINN
results can be noted by comparison with the FE method. Interesting to note that the computational
time of a PINN/ELM analysis is similar to a FE simulation. This example demonstrates the potential-
ity of using PINN and ELM for accurate and fast preliminary structural analysis alternative to other
numerical methods.

Figure 2 – Comparison between PINN and FE method for the linear static, buckling and free
vibration solutions for lamination sequence [±45/0/90]2s.
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4.2 Wing box
The second illutrative example regards a wing box structure whose geometry is outlined in Figure 3.
Skins, spar webs and stringers are assumed to have the same thickness t = 1 mm and are made of
an light aluminum alloy whose properties are: E = 73000 MPa and ν = 0.33. The wing box is clamped
at one end and free at the other. The free end is stiffened by a rib, which is used for load introduction.
The PINN approach is now used as an hybrid metamodeling technique, i.e. grey-box, for predicting

Figure 3 – Geometry of the wing box.

the linear static response under the effect of a concentrated vertical force F acting at the free end –
the force is applied at the shear center of the section in order to avoid any torsional effects and with
a magnitude such to have a vertial rigid motion of the rib section equal to w = 1 mm.
The wing box of Figure 3 is modeled as an assembly of 10 plate elements: three and two for the
upper and lower skin, respectively, and one for each spar and stringer. These plate elements are
linked to each other through 7 interfaces. Due to the topology of the structure, a system of 10 PINNs
is considered for modeling the whole structure, i.e. one for each plate element. Each PINN has the
same shallow architecture of Figure 1 with a number of hidden neurons of Nn = 100 and the hyperbolic
tangent as activation function. The set of training data accounts for Nphysics = 7500 collocation points,
approximately, and Ndata = 30 input/output data points. These latter can be understood as measure-
ments available from an external source and are artifically generated here from the FE model of the
structure. In particular, they are generated performing a linear interpolation of the FE solution at the
node points – a sketch of the training data distribution is reported in Figure 4.
The deflected shape predicted by the PINNs after training is shown in Figure 5 along with the one

Figure 4 – Training data distribution in the wing box.

provided by FE simulations – an amplitude factor of 100 has been used for generating the figures.
As seen, the PINNs are leading to results very similar to those obtained with the FE method, despite
the network is feeded with few data points. To further assess the quality of PINN predictions the
distribution of internal force resultants, Nxx, Nyy and Nxy, are presented in Figure 6 for a portion of the
lower skin. Again, an excellent degree of accuracy is demonstrated.
Despite the more complex neural network architecture and the relatively large number of collocation
points, the time for training is of the order of few tens of seconds. On the contrary, a standard GBL
approach would require a total time of one or two orders of magnitude larger. This example provides
a clear proof of the beneficial effect given by the introduction in the learning process of the physical
understanding of the problem which permits to amplify the information content of the available data.
Indeed, if traditional black-box ANNs were employed with the same number of input/output data it
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would have been impossible to extract the same amount of information from the system, i.e. the
complete structural response of the wing box.

Figure 5 – Comparison of the static deflection shape of the wing box between PINN and FE method.

Figure 6 – Comparison of internal force resultants of a portion of the wing box between PINN and
FE method.

5. CONCLUSIONS
In the present work, a data-efficient and computationally rapid metamodeling technique has been
presented for the analysis and modeling of lightweight structures. This framework is based on the
combination of two novel machine learning methods, i.e. Physics-Informed Neural Networks and Ex-
treme Learning Machine. The introduction of some prior knowledge of the problem in the learning
process of neural networks allows to achieve solutions which are physically consistent with the actual
behavior of the system, even in a low data regime or in total absence of them. Additionally, the adop-
tion of ELM for training PINNs gives a boost to the learning procedure with drastic reduction of training
times compared to traditional learning strategies based on the gradient. The present framework has
been applied in two different ways: as a white-box approach for the solution of specific PDEs, and as
a grey-box approach for the construction of hybrid metamodels based on raw input/output data and
physics information. Comparison with FE simutations provides evidence of the validity of the pro-
posed methodology. For this reason, the present framework has the potential to be applied in a wide
range of problems arising in the aerospace sector, including structural analysis, design optimization,
surrogate modeling and model parameters identification.
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