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The design process of aeronautical structures requires several analyses to be conducted to perform 

preliminary optimizations or parametric studies. Metamodelling techniques have been proposed as a 

viable mean to accomplish these tasks, while alleviating the whole computational burden. An 

interesting example is given by the use of Artificial Neural Networks (ANNs) for designing structures 

operating in the nonlinear postbuckling regime, see [1]. When dealing with metamodels, one crucial 

aspect regards the availability of data for the training process. As a matter of fact, the time for 

generating training points via numerical simulations can be high, and this is even more amplified 

when they are produced via experiments. For this reason, any strategy which can reduce the amount 

of data required for training is of interest, while keeping in mind that any shortage of them may lead 

to poor generalization performances and learning difficulties of the metamodel. In this context, 

Physics-Informed Neural Networks (PINNs) [2] represent an emerging class of ANNs capable of 

integrating the often-limited training dataset with supplementary points - i.e. collocation points 

which are not associated to any simulations or experiments - which bear the physics information of 

the problem under investigation. This additional knowledge is embedded in the loss function defined 

for the training process and can be in the form of any physical law or empirical relation. 

The present work proposes a metamodelling technique based on PINNs combined with a novel 

learning algorithm, known as Extreme Learning Machine (ELM) [3], with application to the structural 

analysis of lightweight structures. The underlying physical laws governing the problem – in this case 

consisting of the equilibrium equations – are plugged into the loss function to enrich the information 

provided by the available training dataset. As compared with existing training strategies which rely 

on Gradient-based Learning (GBL) algorithms [4] and that iteratively minimize the loss function for 

tuning the weights and biases of the network, ELM allows to perform this process in a single step by 

solving a least-square problem. This feature leads to improved training time, which can be several 

orders of magnitudes smaller with respect to the traditional approach. 

An example showing a potential application of the proposed PINN approach is provided in Figs. 1-4. 

The problem consists in obtaining the internal membrane resultant Nxx of a panel with a cutout and 

loaded with a tensile force at its end. The results from Finite Element (FE) analysis are used as 

reference and for simulating the available training dataset, here constituted by the FE solution 

evaluated at the nodal points. The solutions of two different configurations of PINN are compared 

against the one of a standard ANN trained with a GBL algorithm, see Fig. 2. Specifically, the results 

available from a PINN trained using ELM in complete and in partial absense of training points are 

reported in Figs. 3-4, respectively. The comparison between the contours clearly demonstrates the 

beneficial effects of PINN in obtaining more regular solutions while requiring less training data. At the 

same time, drastic saving is achieved in terms of CPU time due to the adoption of ELM.  
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Fig. 1 Finite Element solution used for reference and for generating training points. 

 

Fig. 2 Standard ANN trained with GBL using the training points taken from the FE solution. 

 

Fig. 3 PINN trained with ELM using only collocation points - completely absense of training points. 

 

Fig. 4 PINN trained with ELM using collocation points and a limited set of training points. 
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